山东大学耳鼻喉眼学报 ›› 2020, Vol. 34 ›› Issue (6): 129-134.doi: 10.6040/j.issn.1673-3770.0.2019.604

• • 上一篇    

侵袭性伪足和MMP-14在肿瘤发病机制中的研究进展

裴雪艳1,2综述王琰1,2审校   

  1. 中国医科大学附属第一医院 耳鼻咽喉头颈外科, 辽宁 沈阳 110001
  • 发布日期:2021-01-11
  • 通讯作者: 王琰. E-mail:wangyanoto@cmu.edu.cn
  • 基金资助:
    辽宁省科学技术基金(20170541026)

Progress in the research on the roles of invadopodia and metalloproteinase-14 in tumorigenesis and cancer development

PEI Xueyan1,2Overview,WANG Yan1,2Guidance   

  1. Department of Otolaryngology & Head and Neck Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
  • Published:2021-01-11

摘要: 恶性肿瘤仍是目前医学难以攻克的课题,原发肿瘤是否已经发生转移,直接影响肿瘤患者的预后。基质金属蛋白酶14(MMP-14)参与正常细胞的生理功能和肿瘤相关过程,如细胞迁移、炎症、侵袭、转移、血管生成和扩散。侵袭性伪足是恶性肿瘤细胞膜形成的一种向外凸起的、具有降解细胞外基质(ECM)能力的膜型突起结构。两者在肿瘤的发生发展中具有重要作用。

关键词: 金属蛋白酶-14, 侵袭性伪足, 肿瘤, 侵袭转移

Abstract: Malignant tumors are still enigmatic in the field of medical science. The prognosis of cancer patients largely depends on whether the primary tumor has metastasized or not. Matrix metalloproteinase-14(MMP-14)is involved in physiological functions of normal cells and in tumor-related processes, such as cell migration, inflammation, invasion, metastasis, and angiogenesis. Invadopodia are protrusions of the plasma membranes of malignant tumor cells, with the ability to degrade the extracellular matrix. Thus, MMP-14 and invadopodia have critical roles in tumorigenesis and cancer progression.

Key words: MMP-14, Invadopodia, Cancer, Invasion and metastasis

中图分类号: 

  • R737
[1] Kudelski J, Mynarczyk G, Darewicz B, et al. Dominative role of MMP-14 over MMP-15 in human urinary bladder carcinoma on the basis of its enhanced specific activity[J]. Medicine(Baltimore), 2020, 99(7): e19224. doi:10.1097/MD.0000000000019224.
[2] Duan FJ, Peng Z, Yin JJ, et al. Expression of MMP-14 and prognosis in digestive system carcinoma: a meta-analysis and databases validation[J]. J Cancer, 2020, 11(5): 1141-1150. doi:10.7150/jca.36469.
[3] Yuan HP, Wei R, Xiao YH, et al. RHBDF1 regulates APC-mediated stimulation of the epithelial-to-mesenchymal transition and proliferation of colorectal cancer cells in part via the Wnt/β-catenin signalling pathway[J]. Exp Cell Res, 2018, 368(1): 24-36. doi:10.1016/j.yexcr.2018.04.009.
[4] Liu G, Bao YT, Liu CH, et al. IKKε phosphorylates kindlin-2 to induce invadopodia formation and promote colorectal cancer metastasis[J]. Theranostics, 2020, 10(5): 2358-2373. doi:10.7150/thno.40397.
[5] Kumar S, Das A, Barai A, et al. MMP secretion rate and inter-invadopodia spacing collectively govern cancer invasiveness[J]. Biophys J, 2018, 114(3): 650-662. doi:10.1016/j.bpj.2017.11.3777.
[6] Yang J, Kasberg WC, Celo A, et al. Post-translational modification of the membrane type 1 matrix metalloproteinase(MT1-MMP)cytoplasmic tail impacts ovarian cancer multicellular aggregate dynamics[J]. J Biol Chem, 2017, 292(32): 13111-13121. doi:10.1074/jbc.M117.800904.
[7] Planchon D, Rios Morris E, Genest M, et al. MT1-MMP targeting to endolysosomes is mediated by upregulation of flotillins[J]. J Cell Sci, 2018, 131(17): jcs218925. doi:10.1242/jcs.218925.
[8] Lodillinsky C, Infante E, Guichard A, et al. P63/MT1-MMP Axis is required for in situ to invasive transition in basal-like breast cancer[J]. Oncogene, 2016, 35(3): 344-357. doi:10.1038/onc.2015.87.
[9] Kajiho H, Kajiho Y, Frittoli E, et al. RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs[J]. EMBO Rep, 2016, 17(7): 1061-1080. doi:10.15252/embr.201642032.
[10] Loskutov YV, Kozyulina PY, Kozyreva VK, et al. NEDD9/Arf6-dependent endocytic trafficking of matrix metalloproteinase 14: a novel mechanism for blocking mesenchymal cell invasion and metastasis of breast cancer[J]. Oncogene, 2015, 34(28): 3662-3675. doi:10.1038/onc.2014.297.
[11] Waheed S, Dorjbal B, Hamilton CA, et al. Progesterone and calcitriol reduce invasive potential of endometrial cancer cells by targeting ARF6, NEDD9 and MT1-MMP[J]. Oncotarget, 2017, 8(69): 113583-113597. doi:10.18632/oncotarget.22745.
[12] Wang ZQ, Zhang F, He JQ, et al. Binding of PLD2-generated phosphatidic acid to KIF5B promotes MT1-MMP surface trafficking and lung metastasis of mouse breast cancer cells[J]. Dev Cell, 2017, 43(2): 186-197.e7. doi:10.1016/j.devcel.2017.09.012.
[13] Baker TM, Waheed S, Syed V. RNA interference screening identifies clathrin-B and cofilin-1 as mediators of MT1-MMP in endometrial cancer[J]. Exp Cell Res, 2018, 370(2): 663-670. doi:10.1016/j.yexcr.2018.07.031.
[14] Ager EI, Kozin SV, Kirkpatrick ND, et al. Blockade of MMP14 activity in murine breast carcinomas: implications for macrophages, vessels, and radiotherapy[J]. J Natl Cancer Inst, 2015, 107(4): djv017. doi:10.1093/jnci/djv017.
[15] Guangfei C, Feng C, Zhanwei D, et al. MMP14 predicts a poor prognosis in patients with colorectal cancer[J]. Human Pathology, 2019, 83(1): 36-42. doi: 10.1016/j.humpath.2018.03.030.
[16] 吴静, 刘业海. 头颈部鳞状细胞癌的靶向治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 97-102. doi:10.6040/j.issn.1673-3770.0.2018.058. WU Jing, LIU Yehai. Targeted therapy for head and neck squamous cell carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(5): 97-102. doi:10.6040/j.issn.1673-3770.0.2018.058.
[17] 王小清, 王金莲, 林帅, 等. miR-369-3p靶向MMP14调节乳头状甲状腺癌细胞侵袭、迁移和上皮间质转化的作用[J]. 中国免疫学杂志, 2019, 35(21): 2576-2581. doi: 10.3969/j.issn.1000-484X.2019.21.004. WANG Xiaoqing, WANG Jinlian, LIN Shuai, et al. Effect of miR-369-3p targeting MMP14 on invasion, migration and epithelial-mesenchymal transition of papillary thyroid carcinoma cells[J]. Chinese Journal of Immunology, 2019, 35(21): 2576-2581. doi: 10.3969/j.issn.1000-484X.2019.21.004.
[18] Nair RP, Timiri Shanmugam PS, Sunavala-Dossabhoy G. Discretionary transduction of MMP-sensitized tousled in head and neck cancer[J]. Mol Ther Oncolytics, 2019, 14: 57-65. doi:10.1016/j.omto.2019.02.003.
[19] 高浩然, 佟德惠, 黄泽清, 等. RECK、MMP-14及VEGF在喉癌中的表达及临床意义[J]. 中国医药导报, 2016, 13(2): 85-88. doi: CNKI:SUN:YYCY.0.2016-02-024. GAO Haoran, TONG Dehui, HUANG Zeqing, et al. Expression and clinical significance of RECK, MMP-14 and VEGF pro-tein in laryngeal carcinoma[J]. China Medical Herald, 2016, 13(2): 85-88. doi: CNKI:SUN:YYCY.0.2016-02-024.
[20] Eddy RJ, Weidmann MD, Sharma VP, et al. Tumor cell invadopodia: invasive protrusions that orchestrate metastasis[J]. Trends Cell Biol, 2017, 27(8): 595-607. doi:10.1016/j.tcb.2017.03.003.
[21] Castro-Castro A, Marchesin V, Monteiro P, et al. Cellular and molecular mechanisms of MT1-MMP-dependent cancer cell invasion[J]. Annu Rev Cell Dev Biol, 2016, 32: 555-576. doi:10.1146/annurev-cellbio-111315-125227.
[22] Esmaeili Pourfarhangi K, Cardenas de la Hoz E, Cohen AR, et al. Contact guidance is cell cycle-dependent[J]. APL Bioeng, 2018, 2(3): 031904. doi:10.1063/1.5026419.
[23] Bayarmagnai B, Perrin L, Pourfarhangi KE, et al. Invadopodia-mediated ECM degradation is enriched in the G1 phase of the cell cycle[J]. Biologists Ltd, 2019, v.18:1-46. doi: 10.1242/jcs.227116.
[24] Di Martino J, Henriet E, Ezzoukhry Z, et al. The microenvironment controls invadosome plasticity[J]. J Cell Sci, 2016, 129(9): 1759-1768. doi:10.1242/jcs.182329.
[25] Zhao P, Xu YL, Wei Y, et al. The CD44s splice isoform is a central mediator for invadopodia activity[J]. J Cell Sci, 2016, 129(7): 1355-1365. doi:10.1242/jcs.171959.
[26] McFarlane S, McFarlane C, Montgomery N, et al. CD44-mediated activation of α5β1-integrin, cortactin and paxillin signaling underpins adhesion of basal-like breast cancer cells to endothelium and fibronectin-enriched matrices[J]. Oncotarget, 2015, 6(34): 36762-36773. doi:10.18632/oncotarget.5461.
[27] Díaz B, Yuen A, Iizuka S, et al. Notch increases the shedding of HB-EGF by ADAM12 to potentiate invadopodia formation in hypoxia[J]. J Cell Biol, 2013, 201(2): 279-292. doi:10.1083/jcb.201209151.
[28] Wang YR, Wang HX, Li JF, et al. Direct visualization of the phenotype of hypoxic tumor cells at single cell resolution in vivo using a new hypoxia probe[J]. Intravital, 2016, 5(2): e1187803. doi:10.1080/21659087.2016.1187803.
[29] Li HM, Yang JG, Liu ZJ, et al. Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metastasis in head and neck squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2017, 36(1): 7. doi:10.1186/s13046-016-0481-1.
[30] Jimenez L, Jayakar SK, Ow TJ, et al. Mechanisms of invasion in head and neck cancer[J]. Arch Pathol Lab Med, 2015, 139(11): 1334-1348. doi:10.5858/arpa.2014-0498-RA.
[31] Qin Z, Feng JF, Liu YS, et al. PDGF-D promotes dermal fibroblast invasion in 3-dimensional extracellular matrix via Snail-mediated MT1-MMP upregulation[J]. Tumour Biol, 2016, 37(1): 591-599. doi:10.1007/s13277-015-3828-x.
[32] Hoshino D, Koshikawa N, Suzuki T, et al. Establishment and validation of computational model for MT1-MMP dependent ECM degradation and intervention strategies[J]. PLoS Comput Biol, 2012, 8(4): e1002479. doi:10.1371/journal.pcbi.1002479.
[33] Yu XZ, Zech T, McDonald L, et al. N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods[J]. J Cell Biol, 2012, 199(3): 527-544. doi:10.1083/jcb.201203025.
[34] Lafleur MA, Mercuri FA, Ruangpanit N, et al. Type I collagen abrogates the clathrin-mediated internalization of membrane type 1 matrix metalloproteinase(MT1-MMP)via the MT1-MMP hemopexin domain[J]. J Biol Chem, 2006, 281(10): 6826-6840. doi:10.1074/jbc.M513084200.
[35] Qiang L, Cao H, Chen J, et al. Pancreatic tumor cell metastasis is restricted by MT1-MMP binding protein MTCBP-1[J]. J Cell Biol, 2019, 218(1): 317-332. doi:10.1083/jcb.201802032.
[36] El Azzouzi K, Wiesner C, Linder S. Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence[J]. J Cell Biol, 2016, 213(1): 109-125. doi:10.1083/jcb.201510043.
[37] Pratt J, Iddir M, Bourgault S, et al. Evidence of MTCBP-1 interaction with the cytoplasmic domain of MT1-MMP: Implications in the autophagy cell index of high-grade glioblastoma[J]. Mol Carcinog, 2016, 55(2): 148-160. doi:10.1002/mc.22264.
[38] Noll B, Benz D, Frey Y, et al. DLC3 suppresses MT1-MMP-dependent matrix degradation by controlling RhoB and actin remodeling at endosomal membranes[J]. J Cell Sci, 2019, 132(11): jcs223172. doi:10.1242/jcs.223172.
[1] 陈坤,李磊,孟国珍,杨军,侯东明. 婴儿鼻腔软骨间叶性错构瘤2例及文献复习[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 27-30.
[2] 郑朝攀,曾小燕,张博,韩灵,罗曼,马玲国. 内镜经翼突入路切除中颅底恶性肿瘤30例临床分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 42-48.
[3] 谷少尉,侯元友,魏东敏,李文明,陈东彦,徐晨阳,雷大鹏,潘新良. 声门上喉癌舌瓣修补术后吞咽功能恢复[J]. 山东大学耳鼻喉眼学报, 2020, 34(5): 127-131.
[4] 聂帅,崔宇杰综述刘岩,文连姬审校. 阻塞性睡眠呼吸暂停与肿瘤相关性进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(5): 152-156.
[5] 青晓艳, 徐义全综述李超审校. 甲状腺未分化癌的分子机制研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 26-31.
[6] 倪烨钦,吴凡,荀延萍,赵盼,张仕蓉,周天晗,孙思涵,陆凯宁,罗定存. BRAFV600E突变比值在合并桥本甲状腺炎甲状腺乳头状癌中的初步研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 75-80.
[7] 宁玉东, 蔡永聪, 孙荣昊, 姜健, 周雨秋, 税春燕, 汪旭, 郑王虎, 何天琪, 李超. 甲状腺乳头状癌前上纵隔淋巴结转移临床病理特征初步分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 120-124.
[8] 武振,房居高. 经口腔前庭腔镜甲状腺手术进展与争议[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 13-18.
[9] 边晓敏, 韩光红综述于丹审校. 细胞外囊泡在头颈部肿瘤中的研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(1): 99-104.
[10] 蒋宁宁,王鹏来,袁长勇,黄晓峰,蒋常委,刘宗响,孙铁忠. 肿瘤转移抑制蛋白在舌鳞状细胞癌中的表达与临床意义[J]. 山东大学耳鼻喉眼学报, 2019, 33(6): 64-67.
[11] 李晓明. 喉癌治疗中喉功能保留的历史、现状和未来[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 1-5.
[12] 刘鸣. 早期声门癌的内镜治疗[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 6-9.
[13] 刘坤,张欣欣. 循环肿瘤细胞在头颈部鳞癌中的富集及检测[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 18-24.
[14] 黄若飞,陈立晓,陈歆维,於子卫,金斌,祝江才,董频. 喉异期喉重复癌[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 36-39.
[15] 孙笑晗,李娜. 喉保留策略在喉癌治疗中的应用—美国临床肿瘤学会临床实践指南更新(2017)介绍[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 40-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!