山东大学耳鼻喉眼学报 ›› 2020, Vol. 34 ›› Issue (6): 82-91.doi: 10.6040/j.issn.1673-3770.0.2019.621

• • 上一篇    

鉴定头颈部鳞癌中异常甲基化的差异表达基因及其通路

董诗坤,沈宇杰,张立庆,周涵,张佳程,董伟达   

  1. 南京医科大学第一附属医院/江苏省人民医院 耳鼻咽喉科, 江苏 南京 210029
  • 发布日期:2021-01-11
  • 基金资助:
    江苏省卫生计生委面上课题(H201603);江苏省青年医学人才项目(QNRC2016614)

Identification of differentially expressed genes and pathways for abnormal methylation in squamous cell carcinoma of the head and neck

DONG Shikun, SHEN Yujie, ZHANG Liqing, ZHOU Han, ZHANG Jiacheng, DONG Weida   

  1. Department of Otolaryngology, the First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu, China
  • Published:2021-01-11

摘要: 目的 基于头颈部鳞癌(HNSCC)的生物标记物及其通路尚不明确的现状,研究旨在分析和鉴定HNSCC中异常甲基化的差异表达基因,探讨其关键基因和潜在通路。 方法 从GEO数据库下载基因表达的数据集GSE107591和甲基化数据集GSE33202。通过R软件筛选异常甲基化基因和差异表达基因,两者取交集后获得低甲基化高表达基因(Hypo-HGs)和高甲基化低表达基因(Hyper-LGs)。利用Enrichr对两组基因进行功能富集分析。蛋白互作(PPI)网络由STRING构建并在Cytoscape中可视化,最后利用生存分析来鉴定出关键基因。此外,还进行了免疫组化分析,利用CMap寻找可能逆转HNSCC基因表达的候选小分子。 结果 共鉴定出28个低甲基化高表达基因,GO富集分析显示其主要参与T细胞趋化性的正调节,表皮发育、细胞-基底连接组件及调节T细胞趋化性等方面。Wiki通路分析的结果表明,其主要参与典型和非典型TGF-β信号传导、血液凝结级联反应、α6β4信号通路、补体和凝血级联反应及癌症中的衰老和自噬途径。同时,发现了24个高甲基化低表达基因,主要富集于血管生成及发育的调节,对干扰素-γ反应的负调节,对干扰素-γ介导的信号通路的负调节和上皮发育的生物学过程。Wiki通路分析显示其主要参与哺乳动物含黄素单加氧酶(FMOs)的催化循环,HIF1A和PPARG调节糖酵解以及苯和黄曲霉毒素B1的代谢。此外,鉴定出与HNSCC预后相关的关键基因,分别是SERPINE1、PLAU、MMRN1、LAMB3、LAMC2、PDPN和CXCL13。 结论 通过生物信息学分析并鉴定出HNSCC中异常甲基化差异表达的基因和作用途径,为揭示HNSCC发病机制提供了重要的分子学基础。包括SERPINE1、PLAU、MMRN1、LAMB3、LAMC2、PDPN和CXCL13在内的关键基因可能作为基于甲基化的异常生物标志物,为未来寻找HNSCC诊断和治疗靶点提供了新的思路。

关键词: 头颈部鳞癌, 甲基化, 基因表达, 差异表达分析

Abstract: Objective The biomarkers and pathways of head and neck squamous cell carcinoma(HNSCC)are yet to be identified. The purpose of this study is to analyze differentially expressed genes associated with abnormal methylation in HNSCC and identify key genes and potential pathways. Methods The gene expression data set, GSE107591, and methylation data set, GSE33202, were obtained from the GEO database. The abnormally methylated genes and differentially expressed genes were screened using R, and the low methylation-high expression genes(Hypo-HGs)and high methylation-low expression genes(Hyper-LGs)were identified using the intersect function. Enrichr was used for functional and enrichment analysis of the two groups of genes. The protein-protein interaction(PPI)network was constructed using STRING and visualized using Cytoscape. Finally, we used survival analysis to identify key genes. We performed immunohistochemical analysis using CMap to identify small candidate molecules that may reverse HNSCC gene expression. Results A total of 28 hypomethylated, highly expressed genes were identified and GO enrichment analysis showed that they were mainly involved in the positive regulation of T cell chemotaxis, epidermal development, and cell-basal junction components. The results of WikiPathway analysis indicate that these genes are mainly involved in typical and atypical TGF-β signaling, blood clotting cascade, α6β4 signaling pathway, complementation and coagulation cascade, and aging and autophagy in cancer. Additionally, we found 24 genes with high methylation and low expression, which are mainly involved in GO biological processes including the regulation of angiogenesis and development, negative regulation of the interferon-γ response, negative regulation of the interferon-γ-mediated signaling pathway, and epithelial development. WikiPathway analysis further showed that these genes are mainly involved in the catalytic cycle of mammalian riboflavin monooxygenases(FMOs). Specifically, HIF1A and PPARG regulate glycolysis and metabolism of benzene and aflatoxin B1. Furthermore, key genes related to the prognosis of HNSCC were identified, namely SERPINE1, PLAU, MMRN1, LAMB3, LAMC2, PDPN, and CXCL13. Conclusion In this study, we have identified differentially expressed genes and pathways of abnormal methylation in HNSCC through biological analysis, thereby providing an important molecular basis for exploring the pathogenesis of HNSCC. Key genes, including SERPINE1, PLAU, MMRN1, LAMB3, LAMC2, PDPN, and CXCL13 can be used as abnormal methylation-based biomarkers and therapeutic targets for future diagnosis and treatment of HNSCC.

Key words: squamous cell carcinoma of the head and neck, methylation, gene expression, differential expression analysis

中图分类号: 

  • R739.91
[1] 冉雄文. PD-1/PD-L1通路抑制剂对头颈癌治疗的现状及发展前景[D]. 重庆: 重庆医科大学, 2018.
[2] Marur S, Forastiere AA. Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment[J]. Mayo Clin Proc, 2016, 91(3): 386-396. doi:10.1016/j.mayocp.2015.12.017.
[3] Riva G, Biolatti M, Pecorari G, et al. PYHIN proteins and HPV: role in the pathogenesis of head and neck squamous cell carcinoma[J]. Microorganisms, 2019, 8(1): E14. doi:10.3390/microorganisms8010014.
[4] Adelstein D, Gillison ML, Pfister DG, et al. NCCN guidelines insights: head and neck cancers, version 2.2017[J]. J Natl Compr Canc Netw, 2017, 15(6): 761-770. doi:10.6004/jnccn.2017.0101.
[5] 赵锦成, 石颖, 张颖, 等. 人头颈鳞癌细胞中CDH13的表达及其甲基化状态研究[J].山东大学耳鼻喉眼学报,2017, 31(4): 60-63. doi:10.6040/j.issn.1673-3770.0.2016.362 ZHAO Jincheng, SHI Ying, ZHANG Ying, et al. Expression and methylation patterns of CDH13 in human head and neck squamous carcinoma cells[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017, 31(4): 60-63. doi:10.6040/j.issn.1673-3770.0.2016.362.
[6] 吴静, 刘业海. 头颈部鳞状细胞癌的靶向治疗研究进展[J].山东大学耳鼻喉眼学报,2018, 32(5): 97-102. doi:10.6040/j.issn.1673-3770.0.2018.058. WU Jing LIU Yehai. Targeted therapy for head and neck squamous cell carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(5): 97-102. doi:10.6040/j.issn.1673-3770.0.2018.058.
[7] 陈曦, 乔明哲. 免疫检查点抑制剂在复发或转移性头颈鳞癌的治疗进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 42-48. doi:10.6040/j.issn.1673-3770.1.2019.001. CHEN Xi, QIAO Mingzhe. Progress of immune checkpoint inhibitors in the treatment of recurrent or metastatic head and neck squamous cell carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 42-48. doi:10.6040/j.issn.1673-3770.1.2019.001.
[8] Stansfield JC, Rusay M, Shan R, et al. Toward signaling-driven biomarkers immune to normal tissue contamination[J]. Cancer Inform, 2016, 15: 15-21. doi:10.4137/CIN.S32468.
[9] 王攀, 赵洪林, 任凡, 等. 表观遗传学在恶性肿瘤发生发展和治疗中的新进展[J]. 中国肺癌杂志,2020, 23(2):91-100. doi:10.3779/j.issn.1009-3419.2020.02.04. WANG Pan, ZHAO Honglin, REN Fan, et al. Research progress of epigenetics in pathogenesis and treatment of malignant tumors[J]. Chinese Journal of Lung Cancer, 2020.23(2):91-100. doi:10.3779/j.issn.1009-3419.2020.02.04.
[10] Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update[J]. Nucleic Acids Res, 2016, 44(W1): W90-W97. doi:10.1093/nar/gkw377.
[11] Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible[J]. Nucleic Acids Res, 2017, 45(D1): D362-D368. doi:10.1093/nar/gkw937.
[12] Tang ZF, Li CW, Kang BX, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102. doi:10.1093/nar/gkx247.
[13] Thul PJ, Lindskog C. The human protein atlas: a spatial map of the human proteome[J]. Protein Sci, 2018, 27(1): 233-244. doi:10.1002/pro.3307.
[14] Gao YR, Kim S, Lee YI, et al. Cellular stress-modulating drugs can potentially be identified by in silico screening with connectivity map(CMap)[J]. Int J Mol Sci, 2019, 20(22): E5601. doi:10.3390/ijms20225601.
[15] Wang YL, Bryant SH, Cheng TJ, et al. PubChem BioAssay: 2017 update[J]. Nucleic Acids Res, 2017, 45(D1): D955-D963. doi:10.1093/nar/gkw1118.
[16] 郭雪茹, 徐克. MicroRNAs在肿瘤相关成纤维细胞促进肿瘤发展进程中的作用[J]. 中国肿瘤生物治疗杂志, 2019, 26(11): 1181-1188. GUO Xueru, XU Ke. Roles of microRNAs in the tumor progression promoted by cancer-associated fibroblasts[J]. Chinese Journal of Cancer Biotherapy, 2019, 26(11): 1181-1188.
[17] Fan L, Zhu QY, Liu L, et al. CXCL13 is androgen-responsive and involved in androgen induced prostate cancer cell migration and invasion[J]. Oncotarget, 2017, 8(32): 53244-53261. doi:10.18632/oncotarget.18387.
[18] 朱大伟, 蒋敬庭. 趋化因子CXCL13及其受体CXCR5在肿瘤中的作用[J]. 临床检验杂志, 2018, 36(2): 127-129. doi:10.13602/j.cnki.jcls.2018.02.13.
[19] Crotty S. T follicular helper cell biology: a decade of discovery and diseases[J]. Immunity, 2019, 50(5): 1132-1148. doi:10.1016/j.immuni.2019.04.011.
[20] Kazanietz MG, Durando M, Cooke M. CXCL13 and its receptor CXCR5 in cancer: inflammation, immune response, and beyond[J]. Front Endocrinol(Lausanne), 2019, 10: 471. doi:10.3389/fendo.2019.00471.
[21] Wang GZ, Cheng X, Zhou B, et al. The chemokine CXCL13 in lung cancers associated with environmental polycyclic aromatic hydrocarbons pollution[J]. Elife, 2015, 4: e09419. doi:10.7554/eLife.09419.
[22] Jung SN, Lim HS, Liu LH, et al. LAMB3 mediates metastatic tumor behavior in papillary thyroid cancer by regulating c-MET/Akt signals[J]. Sci Rep, 2018, 8(1): 2718. doi:10.1038/s41598-018-21216-0.
[23] Wang YH, Jin YX, Bhandari A, et al. Upregulated LAMB3 increases proliferation and metastasis in thyroid cancer[J]. Onco Targets Ther, 2018, 11: 37-46. doi:10.2147/OTT.S149613.
[24] Zhou QH, Deng CZ, Chen JP, et al. Elevated serum LAMC2 is associated with lymph node metastasis and predicts poor prognosis in penile squamous cell carcinoma[J]. Cancer Manag Res, 2018, 10: 2983-2995. doi:10.2147/CMAR.S171912.
[25] Moon YW, Rao G, Kim JJ, et al. LAMC2 enhances the metastatic potential of lung adenocarcinoma[J]. Cell Death Differ, 2015, 22(8): 1341-1352. doi:10.1038/cdd.2014.228.
[26] 钟姗, 王筠, 刘乃嘉, 等. 食管鳞癌中3个新miRNA的分子功能预测[J]. 深圳大学学报(理工版), 2019, 36(4): 347-353. doi:10.3724/SP.J.1249.2019.04347. ZHONG Shan, WANG Yun, LIU Naijia, et al. The prediction of molecular functions for three novel miRNAs in esophageal squamous cell carcinoma[J]. Journal of Shenzhen University(Science & Engineering), 2019, 36(4): 347-353. doi:10.3724/SP.J.1249.2019.04347.
[27] 徐丽云. Drosha沉默对胃癌细胞迁移影响及其分子机制研究[D]. 重庆: 重庆医科大学, 2016.
[28] Nguyen CT, Okamura T, Morita KI, et al. LAMC2 is a predictive marker for the malignant progression of leukoplakia[J]. J Oral Pathol Med, 2017, 46(3): 223-231. doi:10.1111/jop.12485.
[29] 董熠, 李营歌, 姚颐, 等. 平足蛋白在肿瘤发生发展中的研究现状[J]. 肿瘤学杂志, 2019, 25(4): 345-348. doi:10.11735/j.issn.1671-170X.2019.04.B012. DONG Yi, LI Yingge, YAO Yi, et al. Research progress of PDPN in carcinogenesis and development of cancer[J]. Journal of Chinese Oncology, 2019, 25(4): 345-348. doi:10.11735/j.issn.1671-170X.2019.04.B012.
[30] 宋波. microRNA-338通过靶向EphA2基因及调节Wnt/β-catenin信号通路抑制胃癌发展的机制研究[D]. 济南: 山东大学, 2019.
[31] Xiong HG, Li H, Xiao Y, et al. Long noncoding RNA MYOSLID promotes invasion and metastasis by modulating the partial epithelial-mesenchymal transition program in head and neck squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2019, 38(1): 278. doi:10.1186/s13046-019-1254-4.
[32] Lin MS, Zhang Z, Gao MJ, et al. MicroRNA-193a-3p suppresses the colorectal cancer cell proliferation and progression through downregulating the PLAU expression[J]. Cancer Manag Res, 2019, 11: 5353-5363. doi:10.2147/CMAR.S208233.
[33] 张秀景. 口腔恶性肿瘤中基质金属蛋白酶-9的功能变化[J]. 安徽医药, 2017, 21(7): 1172-1175. doi:10.3969/j.issn.1009-6469.2017.07.002. ZHANG Xiujing. Roles of matrix metalloproteinase-9 in malignant cell carcinoma[J]. Anhui Medical and Pharmaceutical Journal, 2017, 21(7): 1172-1175. doi:10.3969/j.issn.1009-6469.2017.07.002.
[34] Pavón MA, Arroyo-Solera I, Téllez-Gabriel M, et al. Enhanced cell migration and apoptosis resistance may underlie the association between high SERPINE1 expression and poor outcome in head and neck carcinoma patients[J]. Oncotarget, 2015, 6(30): 29016-29033. doi:10.18632/oncotarget.5032.
[35] 沈苗, 钟兴伟. SERPINE1基因在胃癌中的表达及临床意义[J]. 世界华人消化杂志, 2018, 26(31): 1818-1824. SHEN Miao, ZHONG Xingwei. Clinical significance of expression of SERPINE1 gene in gastric cancer[J]. World Chinese Journal of Digestology, 2018, 26(31): 1818-1824.
[36] Pavón MA, Arroyo-Solera I, Céspedes MV, et al. uPA/uPAR and SERPINE1 in head and neck cancer: role in tumor resistance, metastasis, prognosis and therapy[J]. Oncotarget, 2016, 7(35): 57351-57366. doi:10.18632/oncotarget.10344.
[37] Zhang HT, Tian EB, Chen YL, et al. Proteomic analysis for finding serum pathogenic factors and potential biomarkers in multiple myeloma[J]. Chin Med J, 2015, 128(8): 1108-1113. doi:10.4103/0366-6999.155112.
[38] Chokchaichamnankit D, Watcharatanyatip K, Subhasitanont P, et al. Urinary biomarkers for the diagnosis of cervical cancer by quantitative label-free mass spectrometry analysis[J]. Oncol Lett, 2019, 17(6): 5453-5468. doi:10.3892/ol.2019.10227.
[1] 芮晓清综述李幼瑾审校. 脐带血细胞分子水平检测与变应性疾病发病机制[J]. 山东大学耳鼻喉眼学报, 2020, 34(1): 110-114.
[2] 赵锦成,石颖,张颖,贾占红,马新,张京秋,吴再军,王宇. 人头颈鳞癌细胞中CDH13的表达及其甲基化状态研究[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 60-63.
[3] 张明德,张祖平,于学民,魏燕红,袁英. RASSF2A基因甲基化在喉癌组织中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 64-67.
[4] 吕梅1,董频2,佘翠萍3,杜翠萍1,李勇1,徐尔东1. 3例喉咽癌组织与相邻正常黏膜的基因表达谱差异分析[J]. 山东大学耳鼻喉眼学报, 2010, 24(5): 5-.
[5] 刘 蕊,时文杰,刘吉祥 . 喉鳞癌组织与相邻正常黏膜的基因表达谱差异[J]. 山东大学耳鼻喉眼学报, 2007, 21(1): 68-70 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!