山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (2): 26-31.doi: 10.6040/j.issn.1673-3770.0.2021.090

• • 上一篇    下一篇

利用RNA-seq探讨谷氨酰胺剥夺对喉癌细胞转录组的影响

王晓亭,陈正侬,易红良   

  1. 上海交通大学附属第六人民医院 耳鼻咽喉头颈外科/上海市睡眠呼吸障碍疾病重点实验室/上海交通大学耳鼻咽喉研究所, 上海 200233
  • 发布日期:2022-04-15
  • 通讯作者: 易红良. E-mail:yihongl@126.com
  • 基金资助:
    国家自然科学基金(81770988,81970869)

Transcriptomic analysis of glutamine deprivation on laryngeal carcinoma cells

WANG Xiaoting, CHEN Zhengnong, YI Hongliang   

  1. Department of Otorhinolaryngology & Head and Heck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital / Shanghai Key Laboratory of Sleep Disordered Breathing / Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China
  • Published:2022-04-15

摘要: 目的 利用RNA-seq技术研究谷氨酰胺剥夺对喉癌细胞基因表达谱的影响。 方法 CCK8检测喉癌细胞增殖速度,RNA sequence检测转录组学的改变。 结果 谷氨酰胺剥夺限制喉癌细胞的增殖,转录组分析发现谷氨酰胺剥夺导致328个基因上调,210个基因下调;GO分析发现上述基因与细胞代谢、蛋白质和核苷酸的合成相关;KEGG信号通路分析发现上述基因与O-多聚糖、糖基磷脂酰肌醇的生物合成,果糖、甘露糖、氨基酸和核苷酸的代谢,P53信号通路相关;疾病富集发现差异表达的基因主要与头颈部肿瘤相关。 结论 谷氨酰胺剥夺限制核酸代谢、RNA和蛋白质的结合,影响P53信号通路。

关键词: 喉癌, 谷氨酰胺代谢, RNA测序

Abstract: Objective Glutamine is necessary for head and neck cancer cells to maintain maximum proliferation rate, this article used RNA sequence to explore the effect of glutamine deprivation on laryngeal cancer cell gene expression Changes. Methods The CCK8 assay measured laryngeal cancer cell proliferation rate, RNA sequence measured transcriptome changes of laryngeal cancer cells after glutamine deprivation, bioinformatics methods analyzed gene enrichment. Results Glutamine deprivation restricted laryngeal cancer cell proliferation, transcriptome analysis found that glutamine deprivation leads to 328 gene up-regulated and 210 genes down-regulated. GO analysis showed that the differentially expressed genes were mainly related to cell metabolism, organelle synthesis, protein and nucleotide synthesis. KEGG signaling pathway analysis showed that signaling pathways changes were mainly related to O-polysaccharides and glycosylphosphatidylinositol biosynthesis, fructose mannacil amino acids and nucleotides metabolism, and the P53 signaling pathway. Disease enrichment found that the differentially expressed genes were mainly related to head and neck carcinoma. Conclusion Glutamine deprivation restricts nucleic acid metabolism, RNA and protein binding, and affects the P53 signaling pathway.

Key words: Laryngeal cancer, Glutamine metabolism, RNA sequence

中图分类号: 

  • R767.91
[1] 徐进敬, 胡京华, 吴元庆, 等. CO2激光显微手术在喉癌前病变和早期声门型喉癌中的应用[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 129-133. doi:10.6040/j.issn.1673-3770.0.2019.501. XU Jinjing, HU Jinghua, WU Yuanqing, et al. Applications of CO2 lasermicrosurgery on laryngeal precancerous lesions and early glottic laryngeal carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 129-133. doi:10.6040/j.issn.1673-3770.0.2019.501.
[2] 谭凤武,邓亚萍,黎可华. 低温等离子射频消融与CO2激光手术治疗早期声门型喉癌疗效的Meta分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 63-71. doi:10.6040/j.issn.1673-3770.0.2019.570. TAN Fengwu, DENG Yaping, LI Kehua. The therapeutic effects of low temperature plasma radiofrequency ablation and CO2 laser surgery on early glottic carcinoma: a Meta-analysis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(6): 63-71. doi:10.6040/j.issn.1673-3770.0.2019.570.
[3] 李晓明. 喉癌治疗中喉功能保留的历史、现状和未来[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 1-5. doi:10.6040/j.issn.1673-3770.1.2019.030. LI Xiaoming. History, current status and future of laryngeal function retention in laryngeal cancer treatment[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 1-5. doi:10.6040/j.issn.1673-3770.1.2019.030.
[4] Magrini SM, Buglione M, Corvò R, et al. Cetuximab and radiotherapy versus cisplatin and radiotherapy for locally advanced head and neck cancer: a randomized phase II trial[J]. J Clin Oncol, 2016, 34(5): 427-435. doi:10.1200/JCO.2015.63.1671.
[5] Leone RD, Zhao L, Englert JM, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion[J]. Science, 2019, 366(6468): 1013-1021.doi:10.1126/science.aav2588.
[6] Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy[J]. Nat Rev Cancer, 2016, 16(11): 749. doi:10.1038/nrc.2016.114.
[7] Li T, Copeland C, Le A. Glutamine metabolism in cancer[J]. Adv Exp Med Biol, 2021, 1311: 17-38. doi:10.1007/978-3-030-65768-0_2.
[8] Bhutia YD, Babu E, Ramachandran S, et al. Amino acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs[J]. Cancer Res, 2015, 75(9): 1782-1788. doi:10.1158/0008-5472.can-14-3745.
[9] van Geldermalsen M, Wang Q, Nagarajah R, et al. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer[J]. Oncogene, 2016, 35(24): 3201-3208. doi:10.1038/onc.2015.381.
[10] Sandulache VC, Ow TJ, Pickering CR, et al. Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells[J]. Cancer, 2011, 117(13): 2926-2938. doi:10.1002/cncr.25868.
[11] Smith B, Schafer XL, Ambeskovic A, et al. Addiction to coupling of the Warburg effect with glutamine catabolism in cancer cells[J]. Cell Rep, 2016, 17(3): 821-836. doi:10.1016/j.celrep.2016.09.045.
[12] Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism[J]. Cell Metab, 2016, 23(1): 27-47. doi:10.1016/j.cmet.2015.12.006.
[13] Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine[J]. EMBO J, 2017, 36(10): 1302-1315. doi:10.15252/embj.201696151.
[14] Yang LF, Venneti S, Nagrath D. Glutaminolysis: a hallmark of cancer metabolism[J]. Annu Rev Biomed Eng, 2017, 19: 163-194. doi:10.1146/annurev-bioeng-071516-044546.
[15] Li L, Meng Y, Li ZY, et al. Discovery and development of small molecule modulators targeting glutamine metabolism[J]. Eur J Med Chem, 2019, 163: 215-242. doi:10.1016/j.ejmech.2018.11.066.
[16] Bott AJ, Shen JL, Tonelli C, et al. Glutamine anabolism plays a critical role in pancreatic cancer by coupling carbon and nitrogen metabolism[J]. Cell Rep, 2019, 29(5): 1287-1298.e6.doi:10.1016/j.celrep.2019.09.056.
[17] Cluntun AA, Lukey MJ, Cerione RA, et al. Glutamine metabolism in cancer: understanding the heterogeneity[J]. Trends Cancer, 2017, 3(3): 169-180. doi:10.1016/j.trecan.2017.01.005.
[18] Dejure FR, Eilers M. MYC and tumor metabolism: chicken and egg[J]. EMBO J, 2017, 36(23): 3409-3420. doi:10.15252/embj.201796438.
[19] Wise DR, DeBerardinis RJ, Mancuso A, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction[J]. Proc Natl Acad Sci USA, 2008, 105(48): 18782-18787. doi:10.1073/pnas.0810199105.
[20] De Vitto H, Pérez-Valencia J, Radosevich JA. Glutamine at focus: versatile roles in cancer[J]. Tumour Biol, 2016, 37(2): 1541-1558. doi:10.1007/s13277-015-4671-9.
[21] Liu Y, He XC, Chen YL, et al. Long non-coding RNA LINC00504 regulates the Warburg effect in ovarian cancer through inhibition of miR-1244[J]. Mol Cell Biochem, 2020, 464(1/2): 39-50.doi:10.1007/s11010-019-03647-z.
[23] Yin L, Yan J, Wang YY, et al. TIGD1, a gene of unknown function, involves cell-cycle progression and correlates with poor prognosis in human cancer[J]. J Cell Biochem, 2019, 120(6): 9758-9767.doi:10.1002/jcb.28256.
[24] Liu QC, Guo L, Zhang S, et al. PRSS1 mutation: a possible pathomechanism of pancreatic carcinogenesis and pancreatic cancer[J]. Mol Med, 2019, 25(1): 44. doi:10.1186/s10020-019-0111-4.
[25] Lee SK, Park EJ, Lee HS, et al. Genome-wide screen of human bromodomain-containing proteins identifies Cecr2 as a novel DNA damage response protein[J]. Mol Cells, 2012, 34(1): 85-91.doi:10.1007/s10059-012-0112-4.
[26] Ge CQ, Li QF, Wang LP, et al. The role of axon guidance factor semaphorin 6B in the invasion and metastasis of gastric cancer[J]. J Int Med Res, 2013, 41(2): 284-292.doi:10.1177/0300060513476436.
[27] Cacace A, Sboarina M, Vazeille T, et al. Glutamine activates STAT3 to control cancer cell proliferation independently of glutamine metabolism[J]. Oncogene, 2017, 36(15): 2074-2084.doi:10.1038/onc.2016.364.
[28] Sun NC, Liang Y, Chen YB, et al. Glutamine affects T24 bladder cancer cell proliferation by activating STAT3 through ROS and glutaminolysis[J]. Int J Mol Med, 2019, 44(6): 2189-2200.doi:10.3892/ijmm.2019.4385.
[29] Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell[J]. Cell Death Differ, 2019, 26(2): 199-212. doi:10.1038/s41418-018-0246-9.
[30] Blagih J, Buck MD, Vousden KH. p53, cancer and the immune response[J]. J Cell Sci, 2020, 133(5): jcs237453. doi:10.1242/jcs.237453.
[31] Akins NS, Nielson TC, Le HV. Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer[J]. Curr Top Med Chem, 2018, 18(6): 494-504. doi:10.2174/1568026618666180523111351.
[1] 李利杰,田秀芬. CO2激光联合低温等离子治疗早期声门型喉癌40例[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 79-85.
[2] 王媚 李志海. 喉癌干细胞:克服多药耐药性的潜在治疗靶点[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 120-128.
[3] 冯成敏,敬一丹刘海,王冰. 咽喉部鳞状细胞癌细胞系[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 113-124.
[4] 李艳杰, 贾建,杨萍,万保罗. 肿瘤异常蛋白在喉癌临床诊断中的价值研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 70-74.
[5] 陈国平,傅敏仪,叶飞,徐建慧. 早期声门型喉癌钬激光与CO2激光手术对比研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 8-11.
[6] 吴允刚,张辉,孙聚兴,刘涛,王彩华,杨欣欣,马林祥,李笑颖,庞太忠,李晓瑜. 环甲膜联合喉室入路切除T1B声门型喉癌临床疗效分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 30-34.
[7] 石玉琦,佘翠平,张庆丰,刘得龙,焦梦思. 早期声门型喉癌低温等离子射频术后喉部感染诊治经验与教训[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 129-134.
[8] 周恩,肖禹,肖旭平. 等离子射频消融技术在早期声门型喉癌治疗中的应用进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 9-15.
[9] 肖旭平,周恩,肖禹. 等离子点状激发射频消融技术治疗早期声门型喉癌(Tis-T1b)31例[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 60-66.
[10] 崔小缓,李丽娜,张延平,蒋兴旺,毕欣欣,冉桃桃,吴莹莹,刘雅莉. 改良负压封闭引流装置在难治性咽瘘治疗中的应用[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 49-53.
[11] 庞振文,黄愉峰,杨爱芳,曾先捷. 喉癌患者术前中性粒细胞/淋巴细胞比值与淋巴结转移的相关性研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 58-62.
[12] 谭凤武,邓亚萍,黎可华. 低温等离子射频消融与CO2激光手术治疗早期声门型喉癌疗效的Meta分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 63-71.
[13] 徐进敬,胡京华,吴元庆,邓毅,喻唯唯. CO2激光显微手术在喉癌前病变和早期声门型喉癌中的应用[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 129-133.
[14] 罗露,周恩,欧阳思,陈义,肖旭平,王继华. 42例喉癌患者血清 microRNAlet-7a 水平的变化及意义[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 96-100.
[15] 申宇鹏,宋琦,李晓明. 喉癌前病变的病因、分子机制和处理策略[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 25-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 和守盰,陈 斌,殷善开,苏开明,姜 晓 . OSAHS患者UPPP手术前后上气道形态学变化[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 385 -388 .
[2] 宋西成,张庆泉,夏永宏,刘鲁沂,于鲁欣,王 郜,姜秀良 . 阻塞性睡眠呼吸暂停低通气综合征患者的术后ICU监护[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 389 -392 .
[3] 薛卫国,孙洁,金铮,石文斌,辛露,林国经,李加耘 . 盐酸左氧氟沙星滴耳液治疗中耳炎的疗效观察[J]. 山东大学耳鼻喉眼学报, 2006, 20(4): 300 -303 .
[4] 张庆泉,李新民,王 强,王有福 . 鼻内镜下犬齿窝径路治疗上颌窦病变[J]. 山东大学耳鼻喉眼学报, 2007, 21(1): 38 -39 .
[5] 董 频,李晓艳,屠理强,孟晴虹,王 桑,谢 晋,姜 彦 . 晚期下咽癌、喉复发癌术后颈部缺损整复组织的选择[J]. 山东大学耳鼻喉眼学报, 2007, 21(5): 385 -387 .
[6] 姜绍红,朱宇宏,王 强,宋西成 . 难治性原发性鼻出血101例[J]. 山东大学耳鼻喉眼学报, 2007, 21(6): 542 -544 .
[7] 王昭迪,时光刚 . 虚拟现实技术在鼻外科的应用[J]. 山东大学耳鼻喉眼学报, 2008, 22(1): 74 -77 .
[8] 雷迅1 ,刘强和1 ,孔中雨1 ,向秋2 ,耿宛平1 ,黄辉3 ,董译元1 ,刘芳贤1
. EGCG对鼻咽癌细胞株裸鼠移植瘤的放疗增敏作用以及对Survivin表达的影响[J]. 山东大学耳鼻喉眼学报, 2009, 23(1): 6 -9 .
[9] 吴世普
. 鼻内镜下联合下鼻道开窗治疗上颌窦真菌球15例[J]. 山东大学耳鼻喉眼学报, 2009, 23(2): 73 -74 .
[10] 刘伟,殷团芳,任基浩. 中耳胆脂瘤的发生及其与细胞凋亡的关系[J]. 山东大学耳鼻喉眼学报, 2010, 24(01): 29 -33 .