山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (1): 105-109.doi: 10.6040/j.issn.1673-3770.0.2021.528

• 论著 • 上一篇    

光学放大效应对神经节细胞复合体测量的影响

赵泓霄,张晗   

  1. 山东大学附属山东省立医院 眼科, 山东 济南 250021
  • 发布日期:2023-02-06
  • 通讯作者: 张晗. E-mail:zhj9667@126.com

Effect of optical amplification on measurement of ganglion cell complex

ZHAO Hongxiao, ZHANG Han   

  1. Department of Ophthalmology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China
  • Published:2023-02-06

摘要: 目的 研究光学放大效应对青年近视患者视网膜神经节细胞复合体(GCC)厚度的测量及其与眼轴(AL)、等效球镜(SE)的关系。 方法 选取2021年9月至2021年11月就诊于眼科的青年近视患者102例眼,低度近视组(-0.5D~-3.0D)38例眼,中度近视组(-3.25D~-6.0D)39例眼,高度近视组(>-6.0D)25例眼。OCT测量GCC厚度参数,对测量结果进行光学放大效应校正,通过单因素方差分析及Pearson相关性分析比较GCC厚度与AL等的关系。 结果 平均GCC厚度、GCC上方厚度、GCC下方厚度在三组间差异有统计学意义,无论是否校正(P均<0.05)。GCC厚度校正前后在中、高度近视组差异有统计学意义(P<0.001),在低度近视组差异无统计学意义(P均>0.05)。校正前平均GCC厚度、GCC上方厚度、GCC下方厚度与AL呈负相关,与SE呈正相关(P均<0.05)。FLV与AL呈负相关(P<0.05), GLV与SE呈负相关(P<0.001)。校正后平均GCC厚度、GCC上方厚度、GCC下方厚度与AL呈正相关,与SE呈负相关(P均<0.001)。 结论 中、高度青年近视患者GCC厚度测量需考虑光学放大效应的影响。

关键词: 光学相干断层扫描, 近视, 视网膜神经节细胞复合体, 光学放大效应, 眼轴长度

Abstract: Objective To observe the measurement of retinal ganglion cell complex(GCC)thickness in young myopia patients by optical amplification effect and its relationship with axial length(AL)and spherical equivalent(SE). Methods From September 2021 to November 2021, 102 young myopia patients(eyes)were selected, including 38 eyes in low myopia group(-0.5 D~-3.0 D), 39 eyes in moderate myopia group(-3.25 D~-6.0 D)and 25 eyes in high myopia group(>-6.0 D). The thickness parameters of GCC were measured by optical coherence tomography(OCT), and the optical amplification effect was corrected for the measurement results. The relationship between GCC thickness and AL was compared by one-way analysis of varianceand Pearson correlation analysis. Results There were significant differences in average GCC thickness, superior GCC thickness and inferior GCC thickness among the three groups, whether corrected or not(all P<0.05). Before and after GCC thickness correction, there was significant difference in middle and high myopia group(all P<0.001), but there was no significant difference in low myopia group(all P>0.05). Before correction, the average GCC thickness, superior GCC thickness and inferior GCC thickness were negatively correlated with AL and positively correlated with SE(all P<0.05). FLV was negatively correlated with AL(P<0.05), GLV was negatively correlated with SE(all P<0.001). After correction, the average GCC thickness, superior GCC thickness and inferior GCC thickness were positively correlated with AL and negatively correlated with SE(P<0.001). Conclusion The effect of optical amplification should be considered in the measurement of GCC thickness in young patients with moderate and high myopia.

Key words: Optical coherence tomography, Myopia, Retinal ganglion cell complex, Optical amplification effect, Ocular axis length

中图分类号: 

  • R778
[1] Baird PN, Saw SM, Lanca C, et al. Myopia[J]. Nat Rev Dis Primers, 2020, 6(1): 99. doi:10.1038/s41572-020-00231-4
[2] Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. doi:10.1016/j.ophtha.2016.01.006
[3] Jonas JB, Aung T, Bourne RR, et al. Glaucoma[J]. Lancet, 2017, 390(10108): 2183-2193. doi:10.1016/S0140-6736(17)31469-1
[4] 徐利辉, 秦萍, 许耀. 频域OCT测量不同程度近视视网膜神经纤维层厚度中光学放大效应的影响[J]. 中华实验眼科杂志, 2019, 37(3): 206-211. doi:10.3760/cma.j.issn.2095-0160.2019.03.009 XU Lihui, QIN Ping, XU Yao. The effect of optical magnification during retinal nerve fiber layer thickness measurement in different degrees of myopia by using frequency domain OCT[J]. Chinese Journal of Experimental Ophthalmology, 2019, 37(3): 206-211. doi:10.3760/cma.j.issn.2095-0160.2019.03.009
[5] 邱坤良, 王耿, 张日平, 等. 眼轴长度和光学放大效应对频域OCT视网膜神经纤维层测量影响[J]. 中国实用眼科杂志, 2016, 34(8): 884-888. doi:10.3760/cma.j.issn.1006-4443.2016.08.030 QIU Kunliang, WANG Geng, ZHANG Riping, et al. The effects of axial length and optical magnification on retinal nerve fiber layer measurement with spectral domain OCT[J]. Chin J Pract Ophthalmol, 2016, 34(8): 884-888. doi:10.3760/cma.j.issn.1006-4443.2016.08.030
[6] Littmann H. Determination of the real size of an object on the fundus of the living eye[J]. Klin Monbl Augenheilkd, 1982, 180(4): 286-289. doi:10.1055/s-2008-1055068
[7] Bennett AG, Rudnicka AR, Edgar DF. Improvements on Littmann's method of determining the size of retinal features by fundus photography[J]. Graefes Arch Clin Exp Ophthalmol, 1994, 232(6): 361-367. doi:10.1007/BF00175988
[8] Nishikawa N, Chua J, Kawaguchi Y, et al. Macular microvasculature and associated retinal layer thickness in pediatric amblyopia: magnification-corrected analyses[J]. Invest Ophthalmol Vis Sci, 2021, 62(3): 39. doi:10.1167/iovs.62.3.39
[9] Petzold A, Balcer LJ, Calabresi PA, et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis[J]. Lancet Neurol, 2017, 16(10): 797-812. doi:10.1016/S1474-4422(17)30278-8
[10] Salehi MA, Nowroozi A, Gouravani M, et al. Associations of refractive errors and retinal changes measured by optical coherence tomography: a systematic review and meta-analysis[J]. Surv Ophthalmol, 2022, 67(2): 591-607. doi:10.1016/j.survophthal.2021.07.007
[11] Lee YP, Ju YS, Choi DG. Ganglion cell-inner plexiform layer thickness by swept-source optical coherence tomography in healthy Korean children: normative data and biometric correlations[J]. Sci Rep, 2018, 8(1): 10605. doi:10.1038/s41598-018-28870-4
[12] Zhao Z, Jiang C. Effect of myopia on ganglion cell complex and peripapillary retinal nerve fibre layer measurements: a Fourier-domain optical coherence tomography study of young Chinese persons[J]. Clin Exp Ophthalmol, 2013, 41(6): 561-566. doi:10.1111/ceo.12045
[13] Dai Y, Xin C, Zhang Q, et al. Impact of ocular magnification on retinal and choriocapillaris blood flow quantification in myopia with swept-source optical coherence tomography angiography[J]. Quant Imaging Med Surg, 2021, 11(3): 948-956. doi:10.21037/qims-20-1011
[14] Higashide T, Ohkubo S, Hangai M, et al. Influence of clinical factors and magnification correction on normal thickness profiles of macular retinal layers using optical coherence tomography[J]. PLoS One, 2016, 11(1): e0147782. doi:10.1371/journal.pone.0147782
[15] Nowroozizadeh S, Cirineo N, Amini N, et al. Influence of correction of ocular magnification on spectral-domain OCT retinal nerve fiber layer measurement variability and performance[J]. Invest Ophthalmol Vis Sci, 2014, 55(6): 3439-3446. doi:10.1167/iovs.14-13880
[16] Chua J, Tham YC, Tan B, et al. Age-related changes of individual macular retinal layers among Asians[J]. Sci Rep, 2019, 9(1): 20352. doi:10.1038/s41598-019-56996-6
[17] Kim JH, Lee SH, Han JY, et al. Comparison of individual retinal layer thicknesses between highly myopic eyes and normal control eyes using retinal layer segmentation analysis[J]. Sci Rep, 2019, 9(1): 14000. doi:10.1038/s41598-019-50306-w
[18] Shpak AA, Korobkova MV. Causes of ganglion cell-inner plexiform layer thinning in myopic eyes[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(1): 3-7. doi:10.1007/s00417-019-04513-w
[19] Cheng L, Wang M, Deng J, et al. Macular ganglion cell-inner plexiform layer, ganglion cell complex, and outer retinal layer thicknesses in a large cohort of Chinese children[J]. Invest Ophthalmol Vis Sci, 2019, 60(14): 4792-4802. doi:10.1167/iovs.18-26300
[20] Rakusiewicz K, Kanigowska K, Hautz W, et al. Investigating ganglion cell complex thickness in children with chronic heart failure due to dilated cardiomyopathy[J]. J Clin Med, 2020, 9(9): E2882. doi:10.3390/jcm9092882
[21] Jin PY, Deng JJ, Lv MZ, et al. Development of the Retina and its relation with myopic shift varies from childhood to adolescence[J]. Br J Ophthalmol, 2022, 106(6): 825-830. doi:10.1136/bjophthalmol-2020-318181
[22] Shariati MA, Park JH, Liao YJ. Optical coherence tomography study of retinal changes in normal aging and after ischemia[J]. Invest Ophthalmol Vis Sci, 2015, 56(5): 2790-2797. doi:10.1167/iovs.14-15145
[23] Nakano N, Hangai M, Noma H, et al. Macular imaging in highly myopic eyes with and without glaucoma[J]. Am J Ophthalmol, 2013, 156(3): 511-523.e6. doi:10.1016/j.ajo.2013.04.028
[1] 代诚李宾中. 多焦点软性角膜接触镜应用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 100-105.
[2] 杨茹,张玉光,徐湘辉,吴雪莲,陶远,谭越. 超声乳化术对老年性白内障黄斑区视网膜结构影响的临床研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 97-102.
[3] 张陶然,王薇,李明铭,黄映湘. IVR治疗mCNV患者黄斑中心凹下脉络膜厚度分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 68-71.
[4] 彭娇,钟定娟,陈蛟,左筠,王华. 光学区直径与暗瞳直径的关系对不同程度近视患者SMILE术后视觉质量的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 100-107.
[5] 张敏,李艳. OCT及OCTA在阿尔茨海默病诊断中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 157-162.
[6] 李莹. 重视角膜屈光手术操作规范及并发症防治[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 1-6.
[7] 张颖,雷玉琳,马志兴,杨星花,张静,侯杰. SMILE联合快速角膜交联术后角膜光密度的早期临床观察[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 52-58.
[8] 刘艺,于明坤,孙伟,邵震,胡媛媛,毕宏生. 角膜塑形术控制儿童近视有效性与安全性的Meta分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 92-100.
[9] 冉宏运,蒋可可,张杰. 早产儿视网膜病变患儿屈光影响因素研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 118-124.
[10] 张昕雨,雷春燕,张美霞. 运用OCT及OCTA观察硅油对视网膜脉络膜的影响[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 132-136.
[11] 岳鹏程,杜秋萱,孔玲,乔镇涛. 未矫正近视性屈光参差患者双眼间调节力对照研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 76-80.
[12] 刘凌,张美霞. 近视的药物治疗[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 123-128.
[13] 任雨馨,赵博军. 病理性近视脉络膜新生血管的诊断与治疗[J]. 山东大学耳鼻喉眼学报, 2020, 34(5): 157-162.
[14] 王露萍黄映湘, 王艳玲. 眼缺血综合征研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 23-27.
[15] 傅强,王红星. 眼缺血综合征患者脉络膜厚度的分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 60-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!