山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (6): 26-31.doi: 10.6040/j.issn.1673-3770.0.2021.544

• 研究进展 • 上一篇    

不同类型人工晶状体植入术后倾斜和偏心影响视觉质量的研究现状

黄子彦,段国平   

  1. 湖南师范大学附属第一医院/湖南省人民医院 眼科, 湖南 长沙 410000
  • 发布日期:2022-12-07
  • 通讯作者: 段国平. E-mail:dgp123004@sina.com
  • 基金资助:
    湖南省教育厅科学研究项目(19C1141)

Effects of tilt and decentration on visual quality after various intraocular lens implantations

HUANG ZiyanOverview,DUAN GuopingGuidance   

  1. Department of Ophthalmology, the First Affiliated Hospital of Hunan Normal University/ People's Hospital of Hunan Province, Changsha 410000, Hunan, China
  • Published:2022-12-07

摘要: 白内障超声乳化吸除后人工晶状体(IOL)植入手术是目前公认有效的白内障治疗方式,现在白内障手术的目标已向获得良好视觉质量的屈光手术转变。IOL术后的偏心和倾斜可以增加高阶像差,降低视觉质量,但不同类型IOL因设计等因素,对术后偏心和倾斜所造成的视觉质量影响并不一致,偏心和倾斜对非球面IOL及多焦点IOL的视觉质量影响较其他类型IOL大。回顾近年来研究白内障IOL植入术后倾斜和偏心的相关文献,并对其产生原因和影响不同类型IOL视觉质量的结果进行综述,以求提供更多的治疗选择和研究方向,改善患者预后。

关键词: 白内障, 人工晶状体, 倾斜, 偏心, 视觉质量

Abstract: Cataract phacoemulsification and intraocular lens(IOL)implantation are currently recognized as effective treatments for cataracts. The goal of cataract surgery has changed to refractive surgery to achieve good visual quality. Postsurgical IOL decentration and tilt can increase high-order aberrations and reduce visual quality. Different IOL have diverse effects on visual quality caused by postoperative decentration and tilt due to their design and other factors. Compared to the visual quality of other types of IOL, those of aspheric and multifocal IOLs are more susceptible to decentration and tilt. This paper reviews the relevant recent literature on tilt and decentration after IOL implantation, analyzes the cause and effect of the visual quality differences between various IOLs, and highlights additional treatment options and research directions to improve the prognosis of cataract patients.

Key words: Cataract, Intraocular lens, Tilt, Decentration, Visual quality

中图分类号: 

  • R776.1
[1] Nishi Y, Hirnschall N, Crnej A, et al. Reproducibility of intraocular lens decentration and tilt measurement using a clinical Purkinje meter[J]. J Cataract Refract Surg, 2010, 36(9): 1529-1535. doi:10.1016/j.jcrs.2010.03.043.
[2] Kimura S, Morizane Y, Shiode Y, et al. Assessment of tilt and decentration of crystalline lens and intraocular lens relative to the corneal topographic axis using anterior segment optical coherence tomography[J]. PLoS One, 2017, 12(9): e0184066. doi:10.1371/journal.pone.0184066.
[3] Sato T, Shibata S, Yoshida M, et al. Short-term dynamics after single- and three-piece acrylic intraocular lens implantation: a swept-source anterior segment optical coherence tomography study[J]. Sci Rep, 2018, 8(1): 10230. doi:10.1038/s41598-018-28609-1.
[4] 曾国燕, 张远平, 李静华, 等. 不同球差非球面人工晶状体个体化选择的研究进展[J]. 国际眼科杂志, 2017, 17(1): 62-65. doi:10.3980/j.issn.1672-5123.2017.1.15. ZENG Guoyan, ZHANG Yuanping, LI Jinghua, et al. Research advance of individual choice for different spherical aberration aspheric intraocular lens[J]. International Eye Science, 2017, 17(1): 62-65. doi:10.3980/j.issn.1672-5123.2017.1.15.
[5] Hirnschall N, Buehren T, Bajramovic F, et al. Prediction of postoperative intraocular lens tilt using swept-source optical coherence tomography[J]. J Cataract Refract Surg, 2017, 43(6): 732-736. doi:10.1016/j.jcrs.2017.01.026.
[6] Wang L, Guimaraes de Souza R, Weikert MP, et al. Evaluation of crystalline lens and intraocular lens tilt using a swept-source optical coherence tomography biometer[J]. J Cataract Refract Surg, 2019, 45(1): 35-40. doi:10.1016/j.jcrs.2018.08.025.
[7] Findl O, Hirnschall N, Draschl P, et al. Effect of manual capsulorhexis size and position on intraocular lens tilt, centration, and axial position[J]. J Cataract Refract Surg, 2017, 43(7): 902-908. doi:10.1016/j.jcrs.2017.04.037.
[8] Chen XY, Gu XX, Wang W, et al. Characteristics and factors associated with intraocular lens tilt and decentration after cataract surgery[J]. J Cataract Refract Surg, 2020, 46(8): 1126-1131. doi:10.1097/j.jcrs.0000000000000219.
[9] Uzel MM, Ozates S, Koc M, et al. Decentration and tilt of intraocular lens after posterior capsulotomy[J]. Semin Ophthalmol, 2018, 33(6): 766-771. doi:10.1080/08820538.2018.1443146.
[10] Ding XX, Wang QM, Xiang LF, et al. Three-dimensional assessments of intraocular lens stability with high-speed swept-source optical coherence tomography[J]. J Refract Surg, 2020, 36(6): 388-394. doi:10.3928/1081597X-20200420-01.
[11] 邢晓杰, 汤欣, 宋慧, 等. 四种非球面人工晶状体植入术后倾斜和偏心的比较[J]. 中华眼科杂志, 2010, 46(4): 332-336. doi:10.3760/cma.j.issn.0412-4081.2010.04.011. XING Xiaojie, TANG Xin, SONG Hui, et al. Comparison of tilt and decentration of four different kinds of aspheric intraocular lenses implantation[J]. Chinese Journal of Ophthalmology, 2010, 46(4): 332-336. doi:10.3760/cma.j.issn.0412-4081.2010.04.011.
[12] 宁远, 王静, 张劲松. 非球面人工晶状体囊袋内植入术后稳定性变化的对比研究[J]. 中国医科大学学报, 2019, 48(4): 295-299. doi:10.12007/j.issn.0258-4646.2019.04.002. NING Yuan, WANG Jing, ZHANG Jinsong. Comparison of stability changes for different aspherical intraocular lenses implanted in the capsular bags[J]. Journal of China Medical University, 2019, 48(4): 295-299. doi:10.12007/j.issn.0258-4646.2019.04.002.
[13] Lawu T, Mukai K, Matsushima H, et al. Effects of decentration and tilt on the optical performance of 6 aspheric intraocular lens designs in a model eye[J]. J Cataract Refract Surg, 2019, 45(5): 662-668. doi:10.1016/j.jcrs.2018.10.049.
[14] Holladay JT, Piers PA, Koranyi G, et al. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes[J]. J Refract Surg, 2002, 18(6): 683-691. doi:10.3928/1081-597X-20021101-04.
[15] Taketani F, Matuura T, Yukawa E, et al. Influence of intraocular lens tilt and decentration on wavefront aberrations[J]. J Cataract Refract Surg, 2004, 30(10): 2158-2162. doi:10.1016/j.jcrs.2004.02.072.
[16] Pérez-Gracia J, Varea A, Ares J, et al. Evaluation of the optical performance for aspheric intraocular lenses in relation with tilt and decenter errors[J]. PLoS One, 2020, 15(5): e0232546. doi:10.1371/journal.pone.0232546.
[17] Eppig T, Scholz K, Löffler A, et al. Effect of decentration and tilt on the image quality of aspheric intraocular lens designs in a model eye[J]. J Cataract Refract Surg, 2009, 35(6): 1091-1100. doi:10.1016/j.jcrs.2009.01.034.
[18] McKelvie J, McArdle B, McGhee C. The influence of tilt, decentration, and pupil size on the higher-order aberration profile of aspheric intraocular lenses[J]. Ophthalmology, 2011, 118(9): 1724-1731. doi:10.1016/j.ophtha.2011.02.025.
[19] Fujikado T, Saika M. Evaluation of actual retinal images produced by misaligned aspheric intraocular lenses in a model eye[J]. Clin Ophthalmol, 2014, 8: 2415-2423. doi:10.2147/OPTH.S72053.
[20] Nanavaty MA, Spalton DJ, Marshall J. Effect of intraocular lens asphericity on vertical Coma aberration[J]. J Cataract Refract Surg, 2010, 36(2): 215-221. doi:10.1016/j.jcrs.2009.08.024.
[21] Mester U, Sauer T, Kaymak H. Decentration and tilt of a single-piece aspheric intraocular lens compared with the lens position in young phakic eyes[J]. J Cataract Refract Surg, 2009, 35(3): 485-490. doi:10.1016/j.jcrs.2008.09.028.
[22] Pérez-Merino P, Marcos S. Effect of intraocular lens decentration on image quality tested in a custom model eye[J]. J Cataract Refract Surg, 2018, 44(7): 889-896. doi:10.1016/j.jcrs.2018.02.025.
[23] He W, Qiu X, Zhang S, et al. Comparison of long-term decentration and tilt in two types of multifocal intraocular lenses with OPD-Scan III aberrometer[J]. Eye(Lond), 2018, 32(7): 1237-1243. doi:10.1038/s41433-018-0068-5.
[24] Xu J, Zheng TY, Lu Y. Effect of decentration on the optical quality of monofocal, extended depth of focus, and bifocal intraocular lenses[J]. J Refract Surg, 2019, 35(8): 484-492. doi:10.3928/1081597X-20190708-02.
[25] Liu X, Xie L, Huang Y. Effects of decentration and tilt at different orientations on the optical performance of a rotationally asymmetric multifocal intraocular lens[J]. J Cataract Refract Surg, 2019, 45(4): 507-514. doi:10.1016/j.jcrs.2018.10.045.
[26] Felipe A, Artigas JM, Díez-Ajenjo A, et al. Modulation transfer function of a toric intraocular lens: evaluation of the changes produced by rotation and tilt[J]. J Refract Surg, 2012, 28(5): 335-340. doi:10.3928/1081597X-20120321-01.
[27] Pérez-Vives C, Ferrer-Blasco T, Madrid-Costa D, et al. Optical quality of aspheric toric intraocular lenses at different degrees of decentering[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2014, 252(6): 969-975. doi:10.1007/s00417-014-2629-z.
[28] 李承霖, 崔红, 李正日, 等. 波前像差光路系统检测IOL倾斜和偏心对光学成像质量的影响[J]. 国际眼科杂志, 2019, 19(12): 2071-2075. doi:10.3980/j.issn.1672-5123.2019.12.17. LI Chenglin, CUI Hong, LI Zhengri, et al. Effect of inclination and eccentricity of intraocular lens on optical imaging quality detected by wavefront aberration system[J]. International Eye Science, 2019, 19(12): 2071-2075. doi:10.3980/j.issn.1672-5123.2019.12.17.
[29] Madrid-Costa D, Pérez-Vives C, Ruiz-Alcocer J, et al. Visual simulation through different intraocular lenses in patients with previous myopic corneal ablation using adaptive optics: effect of tilt and decentration[J]. J Cataract Refract Surg, 2012, 38(5): 774-786. doi:10.1016/j.jcrs.2011.11.036.
[30] Fernández J, Rodríguez-Vallejo M, Martínez J, et al. Patient selection to optimize near vision performance with a low-addition trifocal lens[J]. J Optom, 2020, 13(1): 50-58. doi:10.1016/j.optom.2019.06.003.
[31] Zhang F, Zhang J, Li W, et al. Correlative comparison of three ocular axes to tilt and decentration of intraocular lens and their effects on visual acuity[J]. Ophthalmic Res, 2020, 63(2): 165-173. doi:10.1159/000504716.
[32] Holladay JT, Simpson MJ. Negative Dysphotopsia: causes and rationale for prevention and treatment[J]. J Cataract Refract Surg, 2017, 43(2): 263-275. doi:10.1016/j.jcrs.2016.11.049.
[33] Weikert MP, Golla A, Wang L. Astigmatism induced by intraocular lens tilt evaluated via ray tracing[J]. J Cataract Refract Surg, 2018, 44(6): 745-749. doi:10.1016/j.jcrs.2018.04.035.
[34] Tandogan T, Son HS, Choi CY, et al. Laboratory evaluation of the influence of decentration and pupil size on the optical performance of a monofocal, bifocal, and trifocal intraocular lens[J]. J Refract Surg, 2017, 33(12): 808-812. doi:10.3928/1081597X-20171004-02.
[35] Pilger D, Homburg D, Brockmann T, et al. Clinical outcome and higher order aberrations after bilateral implantation of an extended depth of focus intraocular lens[J]. Eur J Ophthalmol, 2018, 28(4): 425-432. doi:10.1177/1120672118766809.
[36] 韩玉彤, 陈彬川, 朱光举, 等. 超声生物显微镜观察囊袋张力环应用后人工晶状体的偏心量和倾斜度[J]. 眼科新进展, 2017, 37(6): 562-565. doi:10.13389/j.cnki.rao.2017.0142. HAN Yutong, CHEN Binchuan, ZHU Guangju, et al. Decentration and tilt of IOL after capsule tension ring implantation observed by ultrasonic biomicroscope[J]. Recent Advances in Ophthalmology, 2017, 37(6): 562-565. doi:10.13389/j.cnki.rao.2017.0142.
[37] 魏佩佩. 多焦点人工晶体植入术后的视觉质量及并发症[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 141-146. doi:10.6040/j.issn.1673-3770.0.2020.164. WEI Peipei. Visual quality and complications after implantation of multifocal intraocular lens[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 141-146. doi:10.6040/j.issn.1673-3770.0.2020.164.
[38] 杨丽, 李小禹, 兰长骏, 等. Nd: YAG激光后囊膜切开术对人工晶状体位置的影响: 基于CASIA2的研究[J]. 眼科新进展, 2021, 41(8): 759-764. doi:10.13389/j.cnki.rao.2021.0158. YANG Li, LI Xiaoyu, LAN Changjun, et al. Effect of Nd: YAG laser capsulotomy on the position of intraocular lens by CASIA2[J]. Recent Advances in Ophthalmology, 2021, 41(8): 759-764. doi:10.13389/j.cnki.rao.2021.0158.
[1] 段练,孟凡兰述评党光福审校. 干眼对屈光性白内障手术的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(6): 1-6.
[2] 孙极综述李灿审校. 白内障术后人工晶状体轴向位置预测与稳定性相关影响因素[J]. 山东大学耳鼻喉眼学报, 2022, 36(6): 7-12.
[3] 黄子彦综述 段国平审校. 高阶像差对白内障人工晶状体植入术后视觉质量的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(6): 13-18.
[4] 胡尊霞,司马晶,秦波,曹加国,潘伟. 接触镜使用与否在Nd∶YAG激光后囊切开术中的对比研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 41-45.
[5] 代诚李宾中. 多焦点软性角膜接触镜应用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 100-105.
[6] 杨茹,张玉光,徐湘辉,吴雪莲,陶远,谭越. 超声乳化术对老年性白内障黄斑区视网膜结构影响的临床研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 97-102.
[7] 李璟,张辉,王晶. 不同人工晶状体植入对视觉质量影响的临床研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 90-95.
[8] 彭娇,钟定娟,陈蛟,左筠,王华. 光学区直径与暗瞳直径的关系对不同程度近视患者SMILE术后视觉质量的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 100-107.
[9] 厉斌,方学军,吴德,黄敏. 基于NK公式和KS公式预测ICL术后早期拱高的一致性研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 33-41.
[10] 海玥,廖萱. Catquest-9SF的研究进展及临床应用[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 142-146.
[11] 付奕豪,徐逸轩,严宏,张婕. 谷氧还蛋白在眼病中的作用研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 125-130.
[12] 刘少华,郝琳琳,马广凤,侯静,张晗. 喀什与济南地区白内障患者眼部生物学参数分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 110-113.
[13] 魏佩佩,李灿. 多焦点人工晶体植入术后的视觉质量及并发症[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 141-146.
[14] 王宗沂,曲进锋. 白内障术后后部缺血性视神经病变一例并文献复习[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 56-59.
[15] 张丰菊,李玉. 角膜屈光手术术前的筛查要点[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!