山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (1): 47-55.doi: 10.6040/j.issn.1673-3770.0.2022.012

• 论著 • 上一篇    

与喉乳头状瘤恶变进程及预后相关分子标志物研究

王灵娃,王茹,房居高   

  1. 首都医科大学附属北京同仁医院 耳鼻咽喉头颈外科, 北京 100730
  • 发布日期:2023-02-06
  • 通讯作者: 房居高. E-mail:fangjugao@163.com
  • 基金资助:
    国家重点研发计划(2020YFB1312805);首都卫生发展科研专项(2022-1-2051);国家自然科学基金资助(82002880);北京市属医院科研培育计划”项目(PX2021008);北京市医院管理中心“青苗”计划专项经费资助(QML20200205)

Bioinformatics analysis of key molecular markers for malignant transformation of laryngeal papilloma

WANG Lingwa, WANG Ru, FANG Jugao   

  1. Department of otorhinolaryngology & Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
  • Published:2023-02-06

摘要: 目的 基于生物信息学分析筛选影响喉乳头状瘤恶变进程及预后的分子标志物。 方法 从GEO和TCGA数据库分别下载成人喉乳头状瘤数据集GSE10935和喉鳞癌转录组数据,使用R语言筛选两组数据差异表达基因(DEGs)。利用韦恩图分析筛选两组共同DEGs后,使用GEPIA数据库绘制Kaplan-Meier生存曲线进行生存分析,筛选出候选基因。利用HPA数据库分析候选基因的蛋白表达情况得到关键基因后,进行单/多因素COX回归分析,及GO、KEGG功能富集分析。 结果 从GSE10935数据集筛选出112个与喉乳头状瘤发生发展相关的DEGs,从喉鳞癌转录组数据筛选出1817个与喉鳞癌发生发展相关的DEGs。通过韦恩图分析得到共同DEGs 24个。GEPIA在线网站分析显示与正常组织相比,FSCN1、MMP1、IFI27在头颈鳞癌组织(HNSCC)中高表达,ALDH3A1、HLF、MMRN1低表达,差异均有统计学意义(FSCN1:P=0.002 9、MMP1:P=0.047、IFI27:P=0.035、ALDH3A1:P=0.024、HLF:P=0.008、MMRN1:P=0.036)。生存分析显示FSCN1、MMP1、IFI27低表达组患者预后明显优于高表达组患者,ALDH3A1、HLF、MMRN1高表达组患者预后明显优于低表达组患者。HPA数据库分析候选基因免疫组化结果发现,FSCN1蛋白在HNSCC中显著高表达,而ALDH3A1蛋白低表达。进一步生存分析表明FSCN1和ALDH3A1的表达水平是影响HPV相关的HNSCC患者预后的独立风险因素。 结论 FSCN1和ALDH3A1可能是影响喉乳头状瘤恶变的关键基因,FSCN1高表达、ALDH3A1低表达显著影响HPV相关的HNSCC患者预后,可能是潜在阻滞喉乳头状瘤恶变进程的分子靶标。

关键词: 喉乳头状瘤, FSCN1基因, ALDH3A1基因, 生物信息学, 分子标志物

Abstract: Objective To screen for molecular markers affecting malignant transformation and prognosis of laryngeal papilloma using bioinformatics analysis. Methods The GSE10935 gene expression profile of adult laryngeal papilloma was downloaded from the Gene Expression Omnibus database, and the transcriptome data for laryngeal squamous cell carcinoma were downloaded from The Cancer Genome Atlas. Differentially expressed genes(DEGs)in each dataset were identified using limma and DESeq2 R package. Venn diagrams analysis was conducted for identifying common DEGs. Survival analysis was performed by plotting the Kaplan-Meier curves in the Gene Expression Profiling Interactive Analysis(GEPIA)database to screen for candidate genes. Protein expression in the Human Protein Atlas database was analyzed to identify key genes. Univariate/multivariate Cox regression analysis and functional enrichment analyses were performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Results A total of 112 DEGs were related to the occurrence and development of laryngeal papilloma, and 1817 DEGs were related to laryngeal squamous cell carcinoma. Twenty-four common DEGs were identified using Venn diagram analysis. GEPIA revealed that the expression of FSCN1, MMP1, and IFI27 was upregulated, while that of ALDH3A1, HLF, and MMRN1 was downregulated in head and neck squamous cell carcinoma(HNSCC)samples compared with that in normal tissue samples; all differences were significant(FSCN1:P=0.002 9, MMP1:P=0.047, IFI27:P=0.035, ALDH3A1:P=0.024, HLF:P=0.008, MMRN1:P=0.036). Survival analysis revealed that the overexpression of FSCN1, MMP1, and IFI27 and low expression of ALDH3A1, HLF, and MMRN1 affected overall survival. Immunohistochemical analysis showed high FSCN1 expression and low ALDH3A1 expression in HNSCC samples. Further survival analysis showed that the expression levels of FSCN1 and ALDH3A1 were independent risk factors affecting the prognosis of human papillomavirus-related HNSCC. Conclusion FSCN1 and ALDH3A1 are plausible key genes in the malignant transformation of laryngeal papilloma. High FSCN1 expression and low ALDH3A1 expression affect the prognosis of human papillomavirus-related HNSCC and are potential molecular targets for suppressing malignant transformation.

Key words: Laryngeal papilloma, Fascin actin-binding protein 1, Aldehyde Dehydrogenase 3 Family Member A1, Bioinformatics, Molecular markers

中图分类号: 

  • R739.65
[1] El-Naggar CJK, Grandis JR, Takata T, et al.(2017)Odontogenic and Maxillofacial Bone Tumours. WHO Classification of Head and Neck Tumours, 4th ed[M]. International Agency for Research on Cancer: Lyon, France, 2017: 28-31, 93-95, 115-116.
[2] Derkay CS, Bluher AE. Update on recurrent respiratory papillomatosis[J]. Otolaryngol Clin North Am, 2019, 52(4): 669-679. doi:10.1016/j.otc.2019.03.011
[3] Taliercio S, Cespedes M, Born H, et al. Adult-onset recurrent respiratory papillomatosis: a review of disease pathogenesis and implications for patient counseling[J]. JAMA Otolaryngol Head Neck Surg, 2015, 141(1): 78-83. doi:10.1001/jamaoto.2014.2826
[4] DeVoti JA, Rosenthal DW, Wu R, et al. Immune dysregulation and tumor-associated gene changes in recurrent respiratory papillomatosis: a paired microarray analysis[J]. Mol Med, 2008, 14(9/10): 608-617. doi:10.2119/2008-00060
[5] Tang ZF, Li CW, Kang BX, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1): W98-W102. doi:10.1093/nar/gkx247
[6] Tang ZF, Kang BX, Li CW, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis[J]. Nucleic Acids Res, 2019, 47(W1): W556-W560. doi:10.1093/nar/gkz430
[7] Thul PJ, Åkesson L, Wiking M, et al. A subcellular map of the human proteome[J]. Science, 2017, 356(6340): eaal3321. doi:10.1126/science.aal3321
[8] Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome[J]. Science, 2015, 347(6220): 1260419. doi:10.1126/science.1260419
[9] Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the human cancer transcriptome[J]. Science, 2017, 357(6352): eaan2507. doi:10.1126/science.aan2507
[10] Yu GC, Wang LG, Han YY, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287. doi:10.1089/omi.2011.0118
[11] Wu TZ, Hu EQ, Xu SB, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data[J]. Innovation(N Y), 2021, 2(3): 100141. doi:10.1016/j.xinn.2021.100141
[12] Reidy PM, Dedo HH, Rabah R, et al. Integration of human papillomavirus type 11 in recurrent respiratory Papilloma-associated cancer[J]. Laryngoscope, 2004, 114(11): 1906-1909. doi:10.1097/01.mlg.0000147918.81733.49
[13] Omland T, Lie KA, Akre H, et al. Recurrent respiratory papillomatosis: HPV genotypes and risk of high-grade laryngeal neoplasia[J]. PLoS One, 2014, 9(6): e99114. doi:10.1371/journal.pone.0099114
[14] 齐雯雯, 陈鲁秋, 贾涛, 等. 复发性喉乳头状瘤中潜在生物学标志物的筛选及生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 75-84. doi:10.6040/j.issn.1673-3770.0.2021.068 QI Wenwen, CHEN Luqiu, JIA Tao, et al. Potential biomarkers and bioinformatics analysis of differentially expressed genes in recurrent laryngeal Papilloma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 75-84. doi:10.6040/j.issn.1673-3770.0.2021.068
[15] Huebbers CU, Preuss SF, Kolligs J, et al. Integration of HPV6 and downregulation of AKR1C3 expression mark malignant transformation in a patient with juvenile-onset laryngeal papillomatosis[J]. PLoS One, 2013, 8(2): e57207. doi:10.1371/journal.pone.0057207
[16] Pakkanen PP, Aaltonen LM, Sorsa TA, et al. Serum matrix metalloproteinase 8 and tissue inhibitor of metalloproteinase 1: potential markers for malignant transformation of recurrent respiratory papillomatosis and for prognosis of laryngeal cancer[J]. Head Neck, 2019, 41(2): 309-314. doi:10.1002/hed.25459
[17] Zhang N, Nan AR, Chen LJ, et al. Circular RNA circSATB2 promotes progression of non-small cell lung cancer cells[J]. Mol Cancer, 2020, 19(1): 101. doi:10.1186/s12943-020-01221-6
[18] Ou CL, Sun ZQ, He XY, et al. Targeting YAP1/LINC00152/FSCN1 signaling axis prevents the progression of colorectal cancer[J]. Adv Sci(Weinh), 2020, 7(3): 1901380. doi:10.1002/advs.201901380
[19] Huang FK, Han SQ, Xing BW, et al. Targeted inhibition of fascin function blocks tumour invasion and metastatic colonization[J]. Nat Commun, 2015, 6: 7465. doi:10.1038/ncomms8465
[20] Ma YF, Machesky LM. Fascin1 in carcinomas: its regulation and prognostic value[J]. Int J Cancer, 2015, 137(11): 2534-2544. doi:10.1002/ijc.29260
[21] Wang CQ, Li Y, Huang BF, et al. EGFR conjunct FSCN1 as a novel therapeutic strategy in triple-negative breast cancer[J]. Sci Rep, 2017, 7(1): 15654. doi:10.1038/s41598-017-15939-9
[22] Wu D, Chen L, Liao W, et al. Fascin1 expression predicts poor prognosis in patients with nasopharyngeal carcinoma and correlates with tumor invasion[J]. Ann Oncol, 2010, 21(3): 589-596. doi:10.1093/annonc/mdp333
[23] Chen Y, Tian T, Li ZY, et al. FSCN1 is an effective marker of poor prognosis and a potential therapeutic target in human tongue squamous cell carcinoma[J]. Cell Death Dis, 2019, 10(5): 356. doi:10.1038/s41419-019-1574-5
[24] Pu J, Zhang Y, Wang AM, et al. ADORA2A-AS1 restricts hepatocellular carcinoma progression via binding HuR and repressing FSCN1/AKT axis[J]. Front Oncol, 2021, 11: 754835. doi:10.3389/fonc.2021.754835
[25] Gao W, Zhang CM, Li WQ, et al. Promoter methylation-regulated miR-145-5p inhibits laryngeal squamous cell carcinoma progression by targeting FSCN1[J]. Mol Ther, 2019, 27(2): 365-379. doi:10.1016/j.ymthe.2018.09.018
[26] Villari G, Jayo A, Zanet J, et al. A direct interaction between fascin and microtubules contributes to adhesion dynamics and cell migration[J]. J Cell Sci, 2015, 128(24): 4601-4614. doi:10.1242/jcs.175760
[27] Lin SC, Taylor MD, Singh PK, et al. How does fascin promote cancer metastasis? [J]. FEBS J, 2021, 288(5): 1434-1446. doi:10.1111/febs.15484
[28] Moreb JS, Baker HV, Chang LJ, et al. ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells[J]. Mol Cancer, 2008, 7: 87. doi:10.1186/1476-4598-7-87
[29] Parajuli B, Fishel ML, Hurley TD. Selective ALDH3A1 inhibition by benzimidazole analogues increase mafosfamide sensitivity in cancer cells[J]. J Med Chem, 2014, 57(2): 449-461. doi:10.1021/jm401508p
[30] Wu D, Mou YP, Chen K, et al. Aldehyde dehydrogenase 3A1 is robustly upregulated in gastric cancer stem-like cells and associated with tumorigenesis[J]. Int J Oncol, 2016, 49(2): 611-622. doi:10.3892/ijo.2016.3551
[31] Xiao N, Cao HB, Chen CH, et al. A novel aldehyde dehydrogenase-3 activator(Alda-89)protects submandibular gland function from irradiation without accelerating tumor growth[J]. Clin Cancer Res, 2013, 19(16): 4455-4464. doi:10.1158/1078-0432.CCR-13-0127
[32] Qu Y, He Y, Yang Y, et al. ALDH3A1 acts as a prognostic biomarker and inhibits the epithelial mesenchymal transition of oral squamous cell carcinoma through IL-6/STAT3 signaling pathway[J]. J Cancer, 2020, 11(9): 2621-2631. doi:10.7150/jca.40171
[1] 齐雯雯,陈鲁秋,贾涛,陈雪梅,张杰,张皓,金鹏,张虎. 复发性喉乳头状瘤中潜在生物学标志物的筛选及生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 75-84.
[2] 牛子捷,肖洋,王军,马丽晶. 喉乳头状瘤手术治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 96-100.
[3] 于克娜,孙凯月,张杰,金鹏. 西妥昔单抗治疗头颈部鳞状细胞癌差异表达基因的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 117-124.
[4] 胡文良,郑艳秋,崔晓波,崔彦茹,孙源昊. 下咽癌中差异表达的蛋白激酶及其抑制剂的生物信息学筛选[J]. 山东大学耳鼻喉眼学报, 2016, 30(3): 24-28.
[5] 陈勇,谢秀芳,刘昉,蒋刈,李瑞玉. IFN-γ转染骨髓间充质干细胞治疗喉乳头状瘤的实验研究[J]. 山东大学耳鼻喉眼学报, 2012, 26(3): 24-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!