山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (3): 125-142.doi: 10.6040/j.issn.1673-3770.0.2022.052

• 综述 • 上一篇    

渗出性年龄相关性黄斑变性并发视网膜色素上皮脱离的诊治进展

徐恩沛1,孙先勇2   

  1. 1. 潍坊医学院 临床学院, 山东 潍坊 261053;
    2. 潍坊眼科医院 眼底病区, 山东 潍坊 261041
  • 发布日期:2023-05-24
  • 通讯作者: 孙先勇. E-mail:Xianyongs1968@aliyun.com

Diagnosis and treatment of exudative age-related macular degeneration combined with retinal pigment epithelial detachment

XU Enpei1, SUN Xianyong2   

  1. 1. School of Clinical Medicine, Weifang Medical University, Weifang 261053, Shandong, China;
    2. Fundus disease area, Weifang Eye Hospital, Weifang 261041, Shandong, China
  • Published:2023-05-24

摘要: 视网膜色素上皮脱离(retinal pigment epithelial detachment, PED)是视网膜色素上皮(retinal pigment epithelium, RPE)层中基底膜和玻璃膜(Bruch膜)内胶原层发生的分离,根据RPE层下积液性质的不同,可分为多种形式,其中以浆液性视网膜色素上皮脱离(serous pigment epithelium detachment, sPED)最为常见。晚期渗出性年龄相关性黄斑变性(exudative age-related macular degeneration, eAMD)是PED最常见的疾病形式。临床上对PED的具体发病机制仍然不是很清楚,目前临床上被广泛认可的PED发病机制是Bruch膜和脉络膜的渗透系数降低,导致RPE层和脉络膜之间液体交换减少,液体积聚于RPE层下方,出现RPE层的脱离。目前临床上对PED的治疗方式主要有眼底视网膜激光光凝术、抗血管内皮生长因子药物玻璃体腔内注射以及光动力疗法等。论文结合国内外研究的最新进展,对eAMD并发PED的流行病学、发病机制、诊断及治疗等进行综述,并对其治疗方式进行讨论和展望。

关键词: 渗出性年龄相关性黄斑变性, 视网膜色素上皮脱离, 息肉样脉络膜血管病变, 视网膜血管瘤样增生, 血管内皮生长因子

Abstract: Retinal pigment epithelial detachment(PED)is the separation of the collagen layer in the retinal pigment epithelial(RPE)layer of the base film from the glass membrane(Bruch's membrane), which can be divided into many forms depending on the properties of the fluid substrate of the RPE layer. Among these forms, serous pigment epithelium detachment(sPED)is most commonly used for slurry-liquid retinal pigment epithelial disengagement. Exudative age-related macular degeneration(eAMD)is the most common form of disease in PED. Clinically, the specific pathogenesis of PED is still unclear. The current clinical and widely recognized PED pathogenesis is that the Bruch's membrane and vein membrane permeation coefficient decreases, resulting the reduction of fluid exchange in the RPE layer and vein membrane. This can lead to liquid accumulation under the RPE layer, thus resulting in the separation of the RPE layer. At present, the treatment of PED in clinical practice mainly includes under-eye retina laser photocoagulation, anti-neovascular drug vitreous body injection therapy, and photodynamic therapy. Based on the latest progress of research locally and internationally, this paper summarizes the epidemiology, pathogenesis, diagnosis, and treatment of eAMD with PED, and discusses and prospects of its treatment methods.

Key words: Exudative age-related macular degeneration, Retinal pigment epithelial detachment, Polypoid choroidal vascular lesions, Retinal angiomatous proliferation, Vascular endothelial growth factor

中图分类号: 

  • R774.5
[1] Gonzalez A, Khurshid G. Treatment of retinal pigment epithelial detachment secondary to exudative age-related macular degeneration[J]. Am J Ophthalmol Case Rep, 2018, 9: 18-22. doi:10.1016/j.ajoc.2017.12.004
[2] Yuzawa M, Mori R, Kawamura A. The origins of polypoidal choroidal vasculopathy[J]. Br J Ophthalmol, 2005, 89(5): 602-607. doi:10.1136/bjo.2004.049296
[3] Nakashizuka H, Mitsumata M, Okisaka S, et al. Clinicopathologic findings in polypoidal choroidal vasculopathy[J]. Invest Ophthalmol Vis Sci, 2008, 49(11): 4729-4737. doi:10.1167/iovs.08-2134
[4] Placinta IA, Castro-Seco R, Díaz-Cascajosa J. Pachychoroid neovasculopathy[J]. Arch Soc Esp Oftalmol(Engl Ed), 2020, 95(6): e46. doi:10.1016/j.oftal.2019.12.017
[5] Yannuzzi LA, Ciardella A, Spaide RF, et al. The expanding clinical spectrum of idiopathic polypoidal choroidal vasculopathy[J]. Arch Ophthalmol, 1997, 115(4): 478-485. doi:10.1001/archopht.1997.01100150480005
[6] van Dijk EHC, Mohabati D, Veselinovic S, et al. The spectrum of polypoidal choroidal vasculopathy in Caucasians: clinical characteristics and proposal of a classification[J]. Graefes Arch Clin Exp Ophthalmol, 2021, 259(2): 351-361. doi:10.1007/s00417-020-04844-z
[7] Sho K, Takahashi K, Yamada H, et al. Polypoidal choroidal vasculopathy: incidence, demographic features, and clinical characteristics[J]. Arch Ophthalmol, 2003, 121(10): 1392-1396. doi:10.1001/archopht.121.10.1392
[8] Maller J, George S, Purcell S, et al. Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration[J]. Nat Genet, 2006, 38(9): 1055-1059. doi:10.1038/ng1873
[9] Ferrington DA, Sinha D, Kaarniranta K. Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration[J]. Prog Retin Eye Res, 2016, 51: 69-89. doi:10.1016/j.preteyeres.2015.09.002
[10] Kauppinen A, Paterno JJ, Blasiak J, et al. Inflammation and its role in age-related macular degeneration[J]. Cell Mol Life Sci, 2016, 73(9): 1765-1786. doi:10.1007/s00018-016-2147-8
[11] Sepp T, Khan JC, Thurlby DA, et al. Complement factor H variant Y402H is a major risk determinant for geographic atrophy and choroidal neovascularization in smokers and nonsmokers[J]. Invest Ophthalmol Vis Sci, 2006, 47(2): 536-540. doi:10.1167/iovs.05-1143
[12] Fritsche LG, Igl W, Bailey JN, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants[J]. Nat Genet, 2016, 48(2): 134-143. doi:10.1038/ng.3448
[13] Cipriani V, Leung HT, Plagnol V, et al. Genome-wide association study of age-related macular degeneration identifies associated variants in the TNXB-FKBPL-NOTCH4 region of chromosome 6p21.3[J]. Hum Mol Genet, 2012, 21(18): 4138-4150. doi:10.1093/hmg/dds225
[14] Majewski J, Schultz DW, Weleber RG, et al. Age-related macular degeneration: a genome scan in extended families[J]. Am J Hum Genet, 2003, 73(3): 540-550. doi:10.1086/377701
[15] Hughes AE, Orr N, Esfandiary H, et al. A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age-related macular degeneration[J]. Nat Genet, 2006, 38(10): 1173-1177. doi:10.1038/ng1890
[16] Smailhodzic D, Muether PS, Chen J, et al. Cumulative effect of risk alleles in CFH, ARMS2, and VEGFA on the response to ranibizumab treatment in age-related macular degeneration[J]. Ophthalmology, 2012, 119(11): 2304-2311. doi:10.1016/j.ophtha.2012.05.040
[17] Piermarocchi S, Miotto S, Colavito D, et al. Combined effects of genetic and non-genetic risk factors affect response to ranibizumab in exudative age-related macular degeneration[J]. Acta Ophthalmol, 2015, 93(6): e451-e457. doi:10.1111/aos.12587
[18] Parekh N, Voland RP, Moeller SM, et al. Association between dietary fat intake and age-related macular degeneration in the carotenoids in age-related eye disease study(CAREDS): an ancillary study of the Women's Health Initiative[J]. Arch Ophthalmol, 2009, 127(11): 1483-1493. doi:10.1001/archophthalmol.2009.130
[19] Sin HP, Liu DT, Lam DS. Lifestyle modification, nutritional and vitamins supplements for age-related macular degeneration[J]. Acta Ophthalmol, 2013, 91(1): 6-11. doi:10.1111/j.1755-3768.2011.02357.x
[20] Chakravarthy U, Wong TY, Fletcher A, et al. Clinical risk factors for age-related macular degeneration: a systematic review and meta-analysis[J]. BMC Ophthalmol, 2010, 10: 31. doi:10.1186/1471-2415-10-31
[21] Jaisankar D, Swaminathan G, Roy R, et al. Association of obesity and age-related macular degeneration in Indian population[J]. Indian J Ophthalmol, 2018, 66(7): 976-983. doi:10.4103/ijo.IJO_1265_17
[22] Ling CNY, Lim SC, Jonas JB, et al. Obesity and risk of age-related eye diseases: a systematic review of prospective population-based studies[J]. Int J Obes(Lond), 2021, 45(9): 1863-1885. doi:10.1038/s41366-021-00829-y
[23] Kaarniranta K, Koskela A, Felszeghy S, et al. Fatty acids and oxidized lipoproteins contribute to autophagy and innate immunity responses upon the degeneration of retinal pigment epithelium and development of age-related macular degeneration[J]. Biochimie, 2019, 159: 49-54. doi:10.1016/j.biochi.2018.07.010
[24] Fernández-Robredo P, Sancho A, Johnen S, et al. Current treatment limitations in age-related macular degeneration and future approaches based on cell therapy and tissue engineering[J]. J Ophthalmol, 2014, 2014: 510285. doi:10.1155/2014/510285
[25] Woo SJ, Ahn J, Morrison MA, et al. Analysis of genetic and environmental risk factors and their interactions in Korean patients with age-related macular degeneration[J]. PLoS One, 2015, 10(7): e0132771. doi:10.1371/journal.pone.0132771
[26] Cheung CM, Laude A, Yeo I, et al. Systemic, ocular and genetic risk factors for age-related macular degeneration and polypoidal choroidal vasculopathy in singaporeans[J]. Sci Rep, 2017, 7: 41386. doi:10.1038/srep41386
[27] Ueta T, Obata R, Inoue Y, et al. Background comparison of typical age-related macular degeneration and polypoidal choroidal vasculopathy in Japanese patients[J]. Ophthalmology, 2009, 116(12): 2400-2406. doi:10.1016/j.ophtha.2009.06.013
[28] Zhang X, Li M, Wen F, et al. Different impact of high-density lipoprotein-related genetic variants on polypoidal choroidal vasculopathy and neovascular age-related macular degeneration in a Chinese Han population[J]. Exp Eye Res, 2013, 108: 16-22. doi:10.1016/j.exer.2012.12.005
[29] Zhang X, Wen F, Zuo CG, et al. Association of genetic variation on chromosome 9p21 with polypoidal choroidal vasculopathy and neovascular age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2011, 52(11): 8063-8067. doi:10.1167/iovs.11-7820
[30] Caramoy A, Ristau T, Lechanteur YT, et al. Environmental and genetic risk factors for retinal angiomatous proliferation[J]. Acta Ophthalmol, 2014, 92(8): 745-748. doi:10.1111/aos.12437
[31] Gross NE, Aizman A, Brucker A, et al. Nature and risk of neovascularization in the fellow eye of patients with unilateral retinal angiomatous proliferation[J]. Retina, 2005, 25(6): 713-718. doi:10.1097/00006982-200509000-00005
[32] Ye ZM, Shuai P, Zhai YR, et al. Associations of 6p21.3 region with age-related macular degeneration and polypoidal choroidal vasculopathy[J]. Sci Rep, 2016, 6: 20914. doi:10.1038/srep20914
[33] Han L, Ma Z, Wang C, et al. Morphologic features and viability analysis of human detached retinal pigment epithelium in age-related macular degeneration[J]. Am J Ophthalmol, 2013, 155(3): 474-483.e2. doi:10.1016/j.ajo.2012.09.010
[34] Szatmári-Tóth M, Kristóf E, Veréb Z, et al. Clearance of autophagy-associated dying retinal pigment epithelial cells - a possible source for inflammation in age-related macular degeneration[J]. Cell Death Dis, 2016, 7(9): e2367. doi:10.1038/cddis.2016.133
[35] Gibson NJ, Brown MF. Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes[J]. Biochemistry, 1993, 32(9): 2438-2454. doi:10.1021/bi00060a040
[36] Nowak JZ. Oxidative stress, polyunsaturated fatty acids-derived oxidation products and bisretinoids as potential inducers of CNS diseases: focus on age-related macular degeneration[J]. Pharmacol Rep, 2013, 65(2): 288-304. doi:10.1016/s1734-1140(13)71005-3
[37] Jarrett SG, Boulton ME. Consequences of oxidative stress in age-related macular degeneration[J]. Mol Aspects Med, 2012, 33(4): 399-417. doi:10.1016/j.mam.2012.03.009
[38] Kaemmerer E, Schutt F, Krohne TU, et al. Effects of lipid peroxidation-related protein modifications on RPE lysosomal functions and POS phagocytosis[J]. Invest Ophthalmol Vis Sci, 2007, 48(3): 1342-1347. doi:10.1167/iovs.06-0549
[39] Tan W, Zou J, Yoshida S, et al. The role of inflammation in age-related macular degeneration[J]. Int J Biol Sci, 2020, 16(15): 2989-3001. doi:10.7150/ijbs.49890
[40] Krohne TU, Stratmann NK, Kopitz J, et al. Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells[J]. Exp Eye Res, 2010, 90(3): 465-471. doi:10.1016/j.exer.2009.12.011
[41] Blasiak J, Piechota M, Pawlowska E, et al. Cellular senescence in age-related macular degeneration: can autophagy and DNA damage response play a role? [J]. Oxid Med Cell Longev, 2017, 2017: 5293258. doi:10.1155/2017/5293258
[42] Kumar MV, Nagineni CN, Chin MS, et al. Innate immunity in the Retina: toll-like receptor(TLR)signaling in human retinal pigment epithelial cells[J]. J Neuroimmunol, 2004, 153(1/2): 7-15. doi:10.1016/j.jneuroim.2004.04.018
[43] Nozaki M, Raisler BJ, Sakurai E, et al. Drusen complement components C3a and C5a promote choroidal neovascularization[J]. PNAS, 2006, 103(7): 2328-2333. doi:10.1073/pnas.0408835103
[44] Zhu Y, Dai B, Li Y, et al. C5a and toll-like receptor 4 crosstalk in retinal pigment epithelial cells[J]. Mol Vis, 2015, 21: 1122-1129. PMID: 26487798.
[45] Bert G, Merriam JE, Jana Z, et al. Variation in factor B(BF)and complement component 2(C2)genes is associated with age-related macular degeneration[J]. Nat Genet, 2006, 38(4): 458-462. doi:10.1038/ng1750
[46] Bressler NM, Silva JC, Bressler SB, et al. Clinicopathologic correlation of drusen and retinal pigment epithelial abnormalities in age-related macular degeneration[J]. Retina, 1994, 14(2): 130-142. doi: 10.1097/00006982-199414020-00006
[47] Pauleikhoff D, Löffert D, Spital G, et al. Pigment epithelial detachment in the elderly[J]. Graefe's Arch Clin Exp Ophthalmol, 2002, 240(7): 533-538. doi:10.1007/s00417-002-0505-8
[48] 邓宝娣, 李嘉, 王庭槐. 脉络膜新生血管相关信号通路研究进展[J]. 国际眼科杂志, 2019, 19(5): 762-765. doi:10.3980/j.issn.1672-5123.2019.5.12 DENG Baodi, LI Jia, WANG Tinghuai. Recent advances in signaling pathways related to choroidal neovascularization[J]. International Eye Science, 2019, 19(5): 762-765. doi:10.3980/j.issn.1672-5123.2019.5.12
[49] Palkar AH, Khetan V. Polypoidal choroidal vasculopathy: an update on current management and review of literature[J]. Taiwan J Ophthalmol, 2019, 9(2): 72-92. doi:10.4103/tjo.tjo_35_18
[50] Kuroiwa S, Tateiwa H, Hisatomi T, et al. Pathological features of surgically excised polypoidal choroidal vasculopathy membranes[J]. Clin Exp Ophthalmol, 2004, 32(3): 297-302. doi:10.1111/j.1442-9071.2004.00827.x
[51] Okubo A, Sameshima M, Uemura A, et al. Clinicopathological correlation of polypoidal choroidal vasculopathy revealed by ultrastructural study[J]. Br J Ophthalmol, 2002, 86(10): 1093-1098. doi:10.1136/bjo.86.10.1093
[52] Kondo N, Honda S, Ishibashi K, et al. Elastin gene polymorphisms in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy[J]. Invest Ophthalmol Vis Sci, 2008, 49(3): 1101-1105. doi:10.1167/iovs.07-1145
[53] Moussa K, Bloomer MM, Schwartz DM, et al. Polypoidal choroidal vasculopathy: a clinicopathologic study[J]. Retin Cases Brief Rep, 2017, 11(Suppl 1): S128-S131. doi:10.1097/ICB.0000000000000464
[54] Khan S, Engelbert M, Imamura Y, et al. Polypoidal choroidal vasculopathy: simultaneous indocyanine green angiography and eye-tracked spectral domain optical coherence tomography findings[J]. Retina, 2012, 32(6): 1057-1068. doi:10.1097/IAE.0b013e31823beb14
[55] Chen L, Zhang XZ, Li ML, et al. Age-related scattered hypofluorescent spots on late-phase indocyanine green angiography as precursor lesions of polypoidal choroidal vasculopathy[J]. Investig Ophthalmol Vis Sci, 2019, 60(6): 2102-2109. doi:10.1167/iovs.19-26968
[56] Li M, Zhang X, Liao N, et al. Analysis of the serum lipid profile in polypoidal choroidal vasculopathy[J]. Sci Rep, 2016, 6: 38342. doi:10.1038/srep38342
[57] Nakajima M, Yuzawa M, Shimada H, et al. Correlation between indocyanine green angiographic findings and histopathology of polypoidal choroidal vasculopathy[J]. Jpn J Ophthalmol, 2004, 48(3): 249-255. doi:10.1007/s10384-003-0057-4
[58] Terasaki H, Miyake Y, Suzuki T, et al. Polypoidal choroidal vasculopathy treated with macular translocation: clinical pathological correlation[J]. Br J Ophthalmol, 2002, 86(3): 321-327. doi:10.1136/bjo.86.3.321
[59] Lafaut BA, Aisenbrey S, Vanden Broecke C, et al. Clinicopathological correlation of deep retinal vascular anomalous complex in age related macular degeneration[J]. Br J Ophthalmol, 2000, 84(11): 1269-1274. doi:10.1136/bjo.84.11.1269
[60] Tsai ASH, Cheung N, Gan ATL, et al. Retinal angiomatous proliferation[J]. Surv Ophthalmol, 2017, 62(4): 462-492. doi:10.1016/j.survophthal.2017.01.008
[61] Baek J, Lee JH, Kim JY, et al. Geographic atrophy and activity of neovascularization in retinal angiomatous proliferation[J]. Invest Ophthalmol Vis Sci, 2016, 57(3): 1500-1505. doi:10.1167/iovs.15-18837
[62] Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von hippel-lindau ubiquitylation complex by O2-regulated prolyl hydroxylation[J]. Science, 2001, 292(5516): 468-472. doi:10.1126/science.1059796
[63] Grimm C, Wenzel A, Groszer M, et al. HIF-1-induced erythropoietin in the hypoxic Retina protects against light-induced retinal degeneration[J]. Nat Med, 2002, 8(7): 718-724. doi:10.1038/nm723
[64] Caprara C, Grimm C. From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease[J]. Prog Retin Eye Res, 2012, 31(1): 89-119. doi:10.1016/j.preteyeres.2011.11.003
[65] Yannuzzi LA, Negrão S, Iida T, et al. Retinal angiomatous proliferation in age-related macular degeneration[J]. Retina, 2001, 21(5): 416-434. doi:10.1097/00006982-200110000-00003
[66] Liaskos M, Asvestas PA, Matsopoulos GK, et al. Detection of retinal pigment epithelium detachment from OCT images using multiscale Gaussian filtering[J]. Technol Health Care, 2019, 27(3): 301-316. doi:10.3233/THC-181501
[67] 张怡, 姚静, 王肖华, 等. 光学相干断层扫描诊断息肉状脉络膜血管病变的敏感性和特异性[J]. 南方医科大学学报, 2017, 37(2): 165-171. doi:10.3969/j.issn.1673-4254.2017.02.04 ZHANG Yi, YAO Jing, WANG Xiaohua, et al. Sensitivity and specificity of optical coherence tomography in diagnosing polypoidal choroidal vasculopathy[J]. Journal of Southern Medical University, 2017, 37(2): 165-171. doi:10.3969/j.issn.1673-4254.2017.02.04
[68] Talks J, Koshy Z, Chatzinikolas K. Use of optical coherence tomography, fluorescein angiography and indocyanine green angiography in a screening clinic for wet age-related macular degeneration[J]. Br J Ophthalmol, 2007, 91(5): 600-601. doi:10.1136/bjo.2006.108043
[69] Krebs I, Glittenberg C, Hagen S, et al. Retinal angiomatous proliferation: morphological changes assessed by Stratus and Cirrus OCT[J]. Ophthalmic Surg Lasers Imaging, 2009, 40(3): 285-289. doi:10.3928/15428877-20090430-10
[70] Ozawa S, Ishikawa K, Ito Y, et al. Differences in macular morphology between polypoidal choroidal vasculopathy and exudative age-related macular degeneration detected by optical coherence tomography[J]. Retina, 2009, 29(6): 793-802. doi:10.1097/IAE.0b013e3181a3b7d9
[71] Srour M, Querques G, Souied EH. Optical coherence tomography angiography of idiopathic polypoidal choroidal vasculopathy[J]. Dev Ophthalmol, 2016, 56: 71-76. doi:10.1159/000442781
[72] Soman M, Sheth JU, Indurkar A, et al. De-novo multilayering in fibrovascular pigment epithelial detachment[J]. Sci Rep, 2021, 11(1): 17209. doi:10.1038/s41598-021-96746-1
[73] Degenhardt V, Khoramnia R, Storr J, et al. Intraoperative OCT in retinal detachment with macular involvement[J]. Ophthalmologe, 2021, 118(8): 810-817. doi:10.1007/s00347-020-01238-8
[74] Imamura Y, Engelbert M, Iida T, et al. Polypoidal choroidal vasculopathy: a review[J]. Surv Ophthalmol, 2010, 55(6): 501-515. doi:10.1016/j.survophthal.2010.03.004
[75] Do DV, Gower EW, Cassard SD, et al. Detection of new-onset choroidal neovascularization using optical coherence tomography: the AMD DOC Study[J]. Ophthalmology, 2012, 119(4): 771-778. doi:10.1016/j.ophtha.2011.10.019
[76] Park EA, Tsikata E, Lee JJ, et al. Artifact rates for 2D retinal nerve fiber layer thickness versus 3D neuroretinal rim thickness using spectral-domain optical coherence tomography[J]. Transl Vis Sci Technol, 2020, 9(10): 10. doi:10.1167/tvst.9.10.10
[77] Lee JE, Kim HW, Lee SJ, et al. Changes of choroidal neovascularization in indocyanine green angiography after intravitreal ranibizumab injection[J]. Retina, 2015, 35(5): 999-1006. doi:10.1097/IAE.0000000000000432
[78] Rush RB, Rush SW. Evaluation of idiopathic choroidal neovascularization with indocyanine green angiography in patients undergoing bevacizumab therapy[J]. J Ophthalmol, 2015, 2015: 642624. doi:10.1155/2015/642624
[79] Puliafito CA. OCT angiography: the next era of OCT technology emerges[J]. Ophthalmic Surg Lasers Imaging Retina, 2014, 45(5): 360. doi:10.3928/23258160-20140925-01
[80] Coscas G, Lupidi M, Coscas F. Heidelberg spectralis optical coherence tomography angiography: technical aspects[J]. Dev Ophthalmol, 2016, 56: 1-5. doi:10.1159/000442768
[81] Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Opt Express, 2012, 20(4): 4710-4725. doi:10.1364/OE.20.004710
[82] 毛剑波, 林晶晶, 沈丽君, 等. 光相干断层扫描血管成像对息肉样脉络膜血管病变异常分支血管网及息肉样病灶的检出率分析[J]. 中华眼底病杂志, 2018, 34(1): 65-66. doi:10.3760/cma.j.issn.1005-1015.2018.01.016
[83] Perrott-Reynolds R, Cann R, Cronbach N, et al. The diagnostic accuracy of OCT angiography in naive and treated neovascular age-related macular degeneration: a review[J]. Eye(Lond), 2019, 33(2): 274-282. doi:10.1038/s41433-018-0229-6
[84] Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]. JAMA Ophthalmol, 2015, 133(1): 45-50. doi:10.1001/jamaophthalmol.2014.3616
[85] Miere A, Querques G, Semoun O, et al. Optical coherence tomography angiography changes in early type 3 neovascularization after anti-vascular endothelial growth factor treatment[J]. Retina, 2017, 37(10): 1873-1879. doi:10.1097/iae.0000000000001447
[86] Kim JY, Kwon OW, Oh HS, et al. Optical coherence tomography angiography in patients with polypoidal choroidal vasculopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(8): 1505-1510. doi:10.1007/s00417-015-3228-3
[87] Takayama K, Ito Y, Kaneko H, et al. Comparison of indocyanine green angiography and optical coherence tomographic angiography in polypoidal choroidal vasculopathy[J]. Eye(Lond), 2017, 31(1): 45-52. doi:10.1038/eye.2016.232
[88] Gunnemann F, Rothaus K, Farecki ML, et al. OCT-angiografie Bei exsudativer AMD mit vaskularisierter pigmentepithelabhebung[J]. Klin Monatsbl Augenheilkd, 2017, 234(9): 1132-1138. doi:10.1055/s-0043-118345
[89] Sarraf D, London NJS, Khurana RN, et al. Ranibizumab treatment for pigment epithelial detachment secondary to neovascular age-related macular degeneration: post hoc analysis of the HARBOR study[J]. Ophthalmology, 2016, 123(10): 2213-2224. doi:10.1016/j.ophtha.2016.07.007
[90] Waldstein SM, Simader C, Staurenghi G, et al. Morphology and visual acuity in aflibercept and ranibizumab therapy for neovascular age-related macular degeneration in the VIEW trials[J]. Ophthalmology, 2016, 123(7): 1521-1529. doi:10.1016/j.ophtha.2016.03.037
[91] Schmidt-Erfurth U, Waldstein SM, Deak GG, et al. Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration[J]. Ophthalmology, 2015, 122(4): 822-832. doi:10.1016/j.ophtha.2014.11.017
[92] Tyagi P, Juma Z, Hor YK, et al. Clinical response of pigment epithelial detachment associated with neovascular age-related macular degeneration in switching treatment from Ranibizumab to Aflibercept[J]. BMC Ophthalmol, 2018, 18(1): 148. doi:10.1186/s12886-018-0824-0
[93] Ersoy L, Ristau T, Kirchhof B, et al. Response to anti-VEGF therapy in patients with subretinal fluid and pigment epithelial detachment on spectral-domain optical coherence tomography[J]. Graefes Arch Clin Exp Ophthalmol, 2014, 252(6): 889-897. doi:10.1007/s00417-013-2519-9
[94] Freeman WR, Kozak I, Yuson RMS, et al. Prognosti implications of pigment epithelial detachment in bevacizumab(avastin)-treated eyes with age-related macular degeneration and choroidal neovascularization[J]. Retina, 2011, 31(9): 1812-1818. doi:10.1097/IAE.0b013e31821987a4
[95] Balaskas K, Karampelas M, Horani M, et al. Quantitative analysis of pigment epithelial detachment response to different anti-vascular endothelial growth factor agents in wet age-related macular degeneration[J]. Retina, 2017, 37(7): 1297-1304. doi:10.1097/IAE.0000000000001342
[96] Bolz M, Michels S, Geitzenauer W, et al. Effect of systemic bevacizumab therapy on retinal pigment epithelial detachment[J]. Br J Ophthalmol, 2007, 91(6): 785-789. doi:10.1136/bjo.2006.102467
[97] Blair MP, Gupta M, Blair NP, et al. Association between retinal thickness and retinal pigment epithelium elevation in age-related macular degeneration[J]. Ophthalmic Surg Lasers Imaging, 2010, 41(2): 175-181. doi:10.3928/15428877-20100303-04
[98] Leitritz M, Gelisken F, Inhoffen W, et al. Can the risk of retinal pigment epithelium tears after bevacizumab treatment be predicted? An optical coherence tomography study[J]. Eye(Lond), 2008, 22(12): 1504-1507. doi:10.1038/eye.2008.145
[99] Chan CK, Abraham P, Meyer CH, et al. Optical coherence tomography-measured pigment epithelial detachment height as a predictor for retinal pigment epithelial tears associated with intravitreal bevacizumab injections[J]. Retina, 2010, 30(2): 203-211. doi:10.1097/IAE.0b013e3181babda5
[100] Hoskin A, Bird AC, Sehmi K. Tears of detached retinal pigment epithelium[J]. Br J Ophthalmol, 1981, 65(6): 417-422. doi:10.1136/bjo.65.6.417
[101] Haller Yeo J, Marcus S, Murphy RP. Retinal pigment epithelial tears: patterns and prognosis[J]. Ophthalmology, 1988, 95(1): 8-13. doi:10.1016/S0161-6420(88)33233-1
[102] Sastre-Ibáñez M, Martínez-Rubio C, Molina-Pallete R, et al. Retinal pigment epithelial tears[J]. J Français D'ophtalmologie, 2019, 42(1): 63-72. doi:10.1016/j.jfo.2018.04.017
[103] Sarraf D, Reddy S, Chiang A, et al. A new grading system for retinal pigment epithelial tears[J]. Retina, 2010, 30(7): 1039-1045. doi:10.1097/IAE.0b013e3181cdf366
[104] Lesniak SP, Fine HF, Prenner JL, et al. Long-term follow-up of spontaneous retinal pigment epithelium tears in age-related macular degeneration treated with anti-VEGF therapy[J]. Eur J Ophthalmol, 2011, 21(1): 73-76. doi:10.5301/ejo.2010.2285
[105] Cho HJ, Kim HS, Yoo SG, et al. Retinal pigment epithelial tear after intravitreal ranibizumab treatment for neovascular age-related macular degeneration[J]. Retina, 2016, 36(10): 1851-1859. doi:10.1097/IAE.0000000000001009
[106] Yu JJ, Agrón E, Clemons TE, et al. Natural history of drusenoid pigment epithelial detachment associated with age-related macular degeneration: age-related eye disease study 2 report no. 17[J]. Ophthalmology, 2019, 126(2): 261-273. doi:10.1016/j.ophtha.2018.08.017
[107] Cukras C, Agrón E, Klein ML, et al. Natural history of drusenoid pigment epithelial detachment in age-related macular degeneration: age-Related Eye Disease Study Report No. 28[J]. Ophthalmology, 2010, 117(3): 489-499. doi:10.1016/j.ophtha.2009.12.002
[108] Kim MS, Ryoo NK, Park KH. Laser and anti-vascular endothelial growth factor treatment for drusenoid pigment epithelial detachment in age-related macular degeneration[J]. Sci Rep, 2020, 10(1): 14370. doi:10.1038/s41598-020-71401-3
[109] The morrfields macular study group. Retinal pigment epithelial detachments in the elderly: a controlled trial of Argon laser photocoagulation[J]. Br J Ophthalmol, 1982, 66(1): 1-16. doi:10.1136/bjo.66.1.1
[110] Barondes MJ, Pagliarini S, Chisholm IH, et al. Controlled trial of laser photocoagulation of pigment epithelial detachments in the elderly: 4 year review[J]. Br J Ophthalmol, 1992, 76(1): 5-7. doi:10.1136/bjo.76.1.5
[111] 陈青山, 陈璐, 赵霞, 等. 微脉冲激光阈值下治疗黄斑软性玻璃膜疣和玻璃膜疣性DPED的形态学改变[J]. 国际眼科杂志, 2020, 20(6): 934-939. doi:10.3980/j.issn.1672-5123.2020.6.02 CHEN Qingshan, CHEN Lu, ZHAO Xia, et al. Morphological changes of macular soft drusen and drusenoid DPED after subthreshold micropulse laser treatment[J]. International Eye Science, 2020, 20(6): 934-939. doi:10.3980/j.issn.1672-5123.2020.6.02
[112] Huang Z, Deng KY, Deng YM, et al. Long-term outcomes of drusenoid pigment epithelium detachment in intermediate AMD treated with 577 nm subthreshold micropulse laser: a preliminary clinical study[J]. Int J Ophthalmol, 2022, 15(3): 474-482. doi:10.18240/ijo.2022.03.16
[113] Sheth J, Anantharaman G, Chandra S, et al. Management of recalcitrant polypoidal choroidal vasculopathy by feeder vessel laser photocoagulation[J]. Am J Ophthalmol Case Rep, 2018, 9: 112-115. doi:10.1016/j.ajoc.2018.01.031
[114] Monés J, Badal J, Biarnés M. Feeder vessel laser photocoagulation for idiopathic, subfoveal polypoidal choroidal vasculopathy not responding to either anti-vascular endothelial growth factor therapy or photodynamic therapy[J]. RETINAL Cases Brief Rep, 2016, 10(1): 100-103. doi:10.1097/icb.0000000000000174
[115] Szentmáry N, Goebels S, Bischoff M, et al. Photodynamische therapie Bei infektiöser keratitis[J]. Der Ophthalmol, 2012, 109(2): 165-170. doi:10.1007/s00347-011-2511-x
[116] O'Day RF, Pejnovic TM, Isaacs T, et al. Australian and new Zealand study of photodynamic therapy in choroidal amelanotic melanoma[J]. Retina, 2020, 40(5): 972-976. doi:10.1097/IAE.0000000000002520
[117] Yoshida I, Taniguchi H, Sakamoto M, et al. Association between the degree of inclusion of components identified on fluorescein or indocyanine green angiography in target spots and relapse of exudate in eyes with polypoidal choroidal vasculopathy and typical age-related macular degeneration after photodynamic therapy[J]. Clin Ophthalmol, 2021, 15: 2063-2075. doi:10.2147/OPTH.S305238
[118] Axer-Siegel R, Ehrlich R, Rosenblatt I, et al. Photodynamic therapy for occult choroidal neovascularization with pigment epithelium detachment in age-related macular degeneration[J]. Arch Ophthalmol, 2004, 122(4): 453-459. doi:10.1001/archopht.122.4.453
[119] Michels S, Hansmann F, Geitzenauer W, et al. Influence of treatment parameters on selectivity of verteporfin therapy[J]. Invest Ophthalmol Vis Sci, 2006, 47(1): 371-376. doi:10.1167/iovs.05-0354
[120] Saito M, Iida T, Nagayama D. Photodynamic therapy with verteporfin for age-related macular degeneration or polypoidal choroidal vasculopathy: comparison of the presence of serous retinal pigment epithelial detachment[J]. Br J Ophthalmol, 2008, 92(12): 1642-1647. doi:10.1136/bjo.2007.137075
[121] Ladas ID, Kotsolis AI, Rouvas AA, et al. Efficacy of photodynamic therapy in the management of occult choroidal neovascularization associated with serous pigment epithelium detachment[J]. Ophthalmologica, 2007, 221(5): 313-319. doi:10.1159/000104761
[122] Boscia F, Furino C, Sborgia L, et al. Photodynamic therapy for retinal angiomatous proliferations and pigment epithelium detachment[J]. Am J Ophthalmol, 2004, 138(6): 1077-1079. doi:10.1016/j.ajo.2004.06.072
[123] Boscia F, Parodi MB, Furino C, et al. Photodynamic therapy with verteporfin for retinal angiomatous proliferation[J]. Graefes Arch Clin Exp Ophthalmol, 2006, 244(10): 1224-1232. doi:10.1007/s00417-005-0205-2.
[124] Teper SJ, Nowinska A, Pilat J, et al. Photodynamic therapy in VEGF inhibition non-responders-Pharmacogenetic study in age-related macular degeneration assessed with swept-source optical coherence tomography[J]. Photodiagnosis Photodyn Ther, 2016, 13: 108-113. doi:10.1016/j.pdpdt.2016.01.006
[125] Tsuchihashi T, Mori K, Ueyama K, et al. Five-year results of photodynamic therapy with verteporfin for Japanese patients with neovascular age-related macular degeneration[J]. Clin Ophthalmol, 2013, 7: 615-620. doi:10.2147/OPTH.S43566
[126] Cook H L, Patel P J, Tufail A. Age-related macular degeneration: diagnosis and management[J]. Br Med Bull, 2008(1):127-149.
[127] Ahmad S, Bearelly S, Stinnett SS, et al. Photodynamic therapy for predominantly hemorrhagic lesions in neovascular age-related macular degeneration[J]. Am J Ophthalmol, 2008, 145(6): 1052-1057. doi:10.1016/j.ajo.2008.02.008
[128] Cheung CMG, Bhargava M, Xiang L, et al. Six-month visual prognosis in eyes with submacular hemorrhage secondary to age-related macular degeneration or polypoidal choroidal vasculopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2013, 251(1): 19-25. doi:10.1007/s00417-012-2029-1
[129] Koizumi H, Kano M, Yamamoto A, et al. Subfoveal choroidal thickness during aflibercept therapy for neovascular age-related macular degeneration: twelve-month results[J]. Ophthalmology, 2016, 123(3): 617-624. doi:10.1016/j.ophtha.2015.10.039
[130] 马臻. 年龄相关性黄斑变性的药物治疗[J]. 中国药业, 2012, 21(18): 97-98. doi:10.3969/j.issn.1006-4931.2012.18.064
[131] Freund KB, Mrejen S, Gallego-Pinazo R. An update on the pharmacotherapy of neovascular age-related macular degeneration[J]. Expert Opin Pharmacother, 2013, 14(8): 1017-1028. doi:10.1517/14656566.2013.787410
[132] 刘新书, 王敏, 赵潺, 等. 结膜下注射曲安奈德治疗葡萄膜炎继发黄斑水肿的临床观察[J]. 中华眼科杂志, 2015, 51(10): 734-738. doi:10.3760/cma.j.issn.0412-4081.2015.10.006
[133] Motarjemizadeh Q, Aidenloo NS, Abbaszadeh M, et al. Intravitreal bevacizumab with or without triamcinolone for wet age-related macular degeneration: twelve-month results of a prospective, randomized investigation[J]. Middle East Afr J Ophthalmol, 2018, 25(1): 1-7. doi:10.4103/meajo.MEAJO_292_16
[134] Baumal CR, Bodaghi B, Singer M, et al. Expert opinion on management of intraocular inflammation, retinal vasculitis, and vascular occlusion after brolucizumab treatment[J]. Ophthalmol Retina, 2021, 5(6): 519-527. doi:10.1016/j.oret.2020.09.020
[135] Kataoka K, Horiguchi E, Kawano K, et al. Three cases of brolucizumab-associated retinal vasculitis treated with systemic and local steroid therapy[J]. Jpn J Ophthalmol, 2021, 65(2): 199-207. doi:10.1007/s10384-021-00818-8
[136] Tong JP, Chan WM, Liu DTL, et al. Aqueous humor levels of vascular endothelial growth factor and pigment epithelium-derived factor in polypoidal choroidal vasculopathy and choroidal neovascularization[J]. Am J Ophthalmol, 2006, 141(3): 456-462. doi:10.1016/j.ajo.2005.10.012
[137] Hu J, Leng X, Hu YJ, et al. The features of inflammation factors concentrations in aqueous humor of polypoidal choroidal vasculopathy[J]. PLoS One, 2016, 11(1): e0147346. doi:10.1371/journal.pone.0147346
[138] Amoaku WM, Chakravarthy U, Gale R, et al. Defining response to anti-VEGF therapies in neovascular AMD. Eye(Lond). 2015, 29(10):1397-1398. doi:10.1038/eye.2015.159.
[139] Tong Y, Zhao KK, Feng D, et al. Comparison of the efficacy of anti-VEGF monotherapy versus PDT and intravitreal anti-VEGF combination treatment in AMD: a Meta-analysis and systematic review[J]. Int J Ophthalmol, 2016, 9(7): 1028-1037. doi:10.18240/ijo.2016.07.16
[140] Papadopoulos N, Martin J, Ruan Q, et al. Binding and neutralization of vascular endothelial growth factor(VEGF)and related ligands by VEGF Trap, ranibizumab and bevacizumab[J]. Angiogenesis, 2012, 15(2): 171-185. doi:10.1007/s10456-011-9249-6
[141] Heier JS, Brown DM, Chong V, et al. Intravitreal aflibercept(VEGF trap-eye)in wet age-related macular degeneration[J]. Ophthalmology, 2012, 119(12): 2537-2548. doi:10.1016/j.ophtha.2012.09.006
[142] Zhang M, Zhang JJ, Yan M, et al. A phase 1 study of KH902, a vascular endothelial growth factor receptor decoy, for e
[1] 王露萍,寇芳柠,王皓,张灿伟,王艳玲,尤冉,吴伟珍. 视网膜下高反射物质在抗VEGF治疗nAMD患者中对视力预后的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(6): 101-105.
[2] 李曼冯雪,王艳玲. 眼缺血综合征与缺血性脑卒中相关性研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 88-92.
[3] 樊慧娟,张海利. HIF-1α与VEGF在中耳胆脂瘤中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 93-97.
[4] 刘志高,王淑雅,韩旭光,王玉,李志伟,马爱华,赵博军. 增殖性糖尿病视网膜病变术前玻璃体腔应用阿柏西普的时机及其疗效观察[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 99-103.
[5] 李萱, 黄映湘. 25例虹膜新生血管发生原因探讨[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 41-47.
[6] 李浩,李延忠,王岩. HIF-1α、VEGF在阻塞性睡眠呼吸暂停低通气综合征患者[J]. 山东大学耳鼻喉眼学报, 2018, 32(2): 43-47.
[7] 王仙,李颖,赵博军. 息肉样脉络膜血管病变诊疗进展[J]. 山东大学耳鼻喉眼学报, 2018, 32(2): 103-106.
[8] 王翠,颜昕,赵博军. IVR联合PDT治疗湿性年龄相关性黄斑变性的临床观察[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 94-97.
[9] 周玮琰,王洪亚,杜秀娟,董卫红. 甘糖酯对糖尿病大鼠视网膜病变中血管生成因子VEGF表达的影响[J]. 山东大学耳鼻喉眼学报, 2017, 31(2): 90-95.
[10] 李盈盈, 周涵, 张伟强, 董伟达. 沉默HIF-1α基因对鼻黏膜上皮细胞生长因子表达的影响[J]. 山东大学耳鼻喉眼学报, 2015, 29(5): 38-42.
[11] 李俊英. 瑞舒伐他汀联合非诺贝特对老年糖尿病视网膜病变患者血管内皮功能的影响[J]. 山东大学耳鼻喉眼学报, 2015, 29(5): 72-75.
[12] 杜祥阁, 张营春, 颜昕, 王翠, 赵博军. 下调血管内皮细胞蛋白激酶CK2表达对血管增殖影响的体外研究[J]. 山东大学耳鼻喉眼学报, 2015, 29(3): 76-80.
[13] 张营春, 杜祥阁, 颜昕, 王翠, 赵博军. 尼古丁对人RPE细胞及HUVEC的影响[J]. 山东大学耳鼻喉眼学报, 2015, 29(2): 74-80.
[14] 谢丽,魏伟. 糖尿病性黄斑水肿的治疗进展[J]. 山东大学耳鼻喉眼学报, 2013, 27(2): 81-85.
[15] 李俐华,任基浩, 殷团芳,刘伟. 儿童复发性呼吸道乳头状瘤组织中STAT3、VEGF的表达及微血管密度测定与复发、侵袭的关系[J]. 山东大学耳鼻喉眼学报, 2011, 25(6): 11-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!