山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (4): 166-171.doi: 10.6040/j.issn.1673-3770.0.2022.197
• • 上一篇
袁玥,付圣尧,姜彦,陈敏
YUAN Yue, FU Shengyao, JIANG Yan, CHEN Min
摘要: 细胞焦亡是由半胱氨酸蛋白酶介导的促炎性的细胞程序性死亡,包括caspase-1介导的经典途径和caspase-4/5/11介导的非经典途径。细胞焦亡在慢性气道炎症性疾病的发生发展过程中发挥重要作用,已成为慢性气道炎症性疾病发病机制的研究热点。论文介绍细胞焦亡的概念,及其在变应性鼻炎、慢性鼻窦炎、哮喘和慢性阻塞性肺疾病中的研究进展,可能为治疗该类疾病提供新思路。
中图分类号:
[1] Galluzzi L, Vitale I, Aaronson S A, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25(3): 486-541. doi:10.1038/s41418-017-0012-4 [2] 宋金婷, 刘洋. 细胞焦亡与新生儿脑损伤[J]. 中华围产医学杂志, 2021, 24(4): 314-317. doi:10.3760/cma.j.cn113903-20200810-00767 SONG Jinting, LIU Yang. Pyroptosis and neonatal brain injury: a review[J]. Chinese Journal of Perinatal Medicine, 2021, 24(4): 314-317. doi:10.3760/cma.j.cn113903-20200810-00767 [3] 中华医学会呼吸病学分会哮喘学组. 上-下气道慢性炎症性疾病联合诊疗与管理专家共识[J]. 中华医学杂志, 2017, 97(26): 2001-2022. doi:10.3760/cma.j.issn.0376-2491.2017.26.001 [4] Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes[J]. Cell, 2014, 157(5): 1013-1022. doi:10.1016/j.cell.2014.04.007 [5] Mangan MSJ, Olhava EJ, Roush WR, et al. Targeting the NLRP3 inflammasome in inflammatory diseases[J]. Nat Rev Drug Discov, 2018, 17(9): 688. doi:10.1038/nrd.2018.149 [6] Yang D, He Y, Muñoz-Planillo R, et al. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock[J]. Immunity, 2015, 43(5): 923-932. doi:10.1016/j.immuni.2015.10.009 [7] Liu X, Xia S, Zhang Z, et al. Channelling inflammation: gasdermins in physiology and disease[J]. Nat Rev Drug Discov, 2021, 20(5): 384-405. doi:10.1038/s41573-021-00154-z [8] Sarhan J, Liu BC, Muendlein HI, et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection[J]. PNAS, 2018, 115(46): E10888-E10897. doi:10.1073/pnas.1809548115 [9] Shi JJ, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575): 660-665. doi:10.1038/nature15514 [10] Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis[J]. Trends Cell Biol, 2017, 27(9): 673-684. doi:10.1016/j.tcb.2017.05.005 [11] Taabazuing CY, Okondo MC, Bachovchin DA. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages[J]. Cell Chem Biol, 2017, 24(4): 507-514.e4. doi:10.1016/j.chembiol.2017.03.009 [12] Schneider KS, Groβ CJ, Dreier RF, et al. The inflammasome drives GSDMD-independent secondary pyroptosis and IL-1 release in the absence of caspase-1 protease activity[J]. Cell Rep, 2017, 21(13): 3846-3859. doi:10.1016/j.celrep.2017.12.018 [13] He Y, Hara H, Núñez G. Mechanism and Regulation of NLRP3 Inflammasome Activation[J]. Trends Biochem Sci, 2016, 41(12): 1012-1021. doi:10.1016/j.tibs.2016.09.002 [14] Place DE, Kanneganti TD. Recent advances in inflammasome biology[J]. Curr Opin Immunol, 2018, 50: 32-38. doi: 10.1016/j.coi.2017.10.011 [15] Miao EA, Leaf IA, Treuting PM, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria[J]. Nat Immunol, 2010, 11(12): 1136-1142. doi:10.1038/ni.1960 [16] Duncan JA, Canna SW. The NLRC4 inflammasome[J]. Immunol Rev, 2018, 281(1): 115-123. doi:10.1111/imr.12607 [17] Kang R, Zeng L, Zhu S, et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis[J]. Cell Host Microbe, 2018, 24(1): 97-108.e4. doi:10.1016/j.chom.2018.05.009 [18] Ding J, Shao F. SnapShot: the noncanonical inflammasome[J]. Cell, 2017, 168(3): 544-544.e1. doi:10.1016/j.cell.2017.01.008 [19] Qiu S, Liu J, Xing F. ‘Hints’ in the killer protein gasdermin D: unveiling the secrets of gasdermins driving cell death[J]. Cell Death Differ, 2017, 24(4): 588-596. doi:10.1038/cdd.2017.24 [20] 吴均春, 王士礼. 上下气道炎性疾病相关性研究[J]. 国际耳鼻咽喉头颈外科杂志, 2018, 42(2): 83-89. doi:10.3760/cma.j.issn.1673-4106.2018.02.005 WU Junchun, WANG Shili. Research of the relationship between upper and lower airway inflammatory diseases[J]. International Journal of Otolaryngology-Head and Neck Surgery, 2018, 42(2): 83-89. doi:10.3760/cma.j.issn.1673-4106.2018.02.005 [21] Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases[J]. Immunol Rev, 2017, 277(1): 61-75. doi: 10.1111/imr.12534 [22] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组,中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 变应性鼻炎诊断和治疗指南(2015年,天津)[J]. 中华耳鼻咽喉头颈外科杂志, 2016, 51(1): 6-24. doi: 10.3760/cma.j.issn.1673-0860.2016.01.004 [23] 刘真, 宋西成. 细胞焦亡在变应性鼻炎中的作用机制及研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 123-129. doi:10.6040/j.issn.1673-3770.0.2021.463 LIU Zhen, SONG Xicheng. Mechanisms and research progress of pyroptosis in allergic rhinitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 123-129. doi:10.6040/j.issn.1673-3770.0.2021.463 [24] Yang Z, Liang C, Wang T, et al. NLRP3 inflammasome activation promotes the development of allergic rhinitis via epithelium pyroptosis[J]. Biochem Biophys Res Commun, 2020, 522(1): 61-67. doi:10.1016/j.bbrc.2019.11.031 [25] Li J, Zhang Y, Zhang L, et al. Fine particulate matter exposure exacerbated nasal mucosal damage in allergic rhinitis mice via NLRP3 mediated pyroptosis[J]. Ecotoxicol Environ Saf, 2021, 228: 112998. doi:10.1016/j.ecoenv.2021.112998 [26] Wang Y, Chen S, Yang PL, et al. AIM2 inflammasome activation may mediate high mobility group box 1 release in murine allergic rhinitis[J]. Braz J Otorhinolaryngol, 2021, 88(6): 925-931. doi:10.1016/j.bjorl.2020.12.014 [27] Yu X, Wang M, Zhao H, et al. Targeting a novel hsa_circ_0000520/miR-556-5p/NLRP3 pathway-mediated cell pyroptosis and inflammation attenuates ovalbumin(OVA)-induced allergic rhinitis(AR)in mice models[J]. Inflamm Res, 2021, 70(6): 719-729. doi:10.1007/s00011-021-01472-z [28] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国慢性鼻窦炎诊断和治疗指南(2018)[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(2): 81-100. doi:10.3760/cma.j.issn.1673-0860.2019.02.001 [29] 杜志宏,于亚峰. NLRP3炎性小体在嗜酸粒细胞性鼻息肉发病及复发中的作用[J]. 山东大学耳鼻喉眼学报, 2016, 30(1): 31-35. doi:10.6040/j.issn.1673-3770.0.2015.318 DU Zhihong, YU Yafeng. Effect of NLRP3 inflammasome in the pathogenesis and relapse of eosinophilic nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2016, 30(1): 31-35, 39. doi:10.6040/j.issn.1673-3770.0.2015.318 [30] Wang Y, Chen S, Wang W, et al. Role of P2X7R in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps[J]. Mol Med Rep, 2021, 24(1): 521. doi:10.3892/mmr.2021.12160 [31] Lin H, Li Z, Lin D, et al. Role of NLRP3 inflammasome in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps[J]. Inflammation, 2016, 39(6): 2045-2052. doi:10.1007/s10753-016-0442-z [32] Zhong B, Du J, Liu F, et al. Hypoxia-induced factor-1α induces NLRP3 expression by M1 macrophages in noneosinophilic chronic rhinosinusitis with nasal polyps[J]. Allergy, 2021, 76(2): 582-586. doi:10.1111/all.14571 [33] Harrison BC, Bell ML, Allen DL, et al. Skeletal muscle adaptations in response to voluntary wheel running in myosin heavy chain null mice[J]. J Appl Physiol, 2002, 92(1): 313-322. doi:10.1152/japplphysiol.00832.2001 [34] 中华医学会, 中华医学会杂志社, 中华医学会全科医学分会, 等. 支气管哮喘基层诊疗指南(2018年)[J]. 中华全科医师杂志, 2018, 17(10): 751-762. doi:10.3760/cma.j.issn.1671-7368.2018.10.002 [35] 石伊宁, 金永梅, 杨进, 等. 细胞焦亡在呼吸系统疾病中作用的研究进展[J]. 中国病理生理杂志, 2021, 37(5): 956-960. doi:10.3969/j.issn.1000-4718.2021.05.026 SHI Yining, JIN Yongmei, YANG Jin, et al. Advances in role of pyroptosis in respiratory diseases[J]. Chinese Journal of Pathophysiology, 2021, 37(5): 956-960. doi:10.3969/j.issn.1000-4718.2021.05.026 [36] Zasona Z, Flis E, Wilk MM, et al. Caspase-11 promotes allergic airway inflammation[J]. Nat Commun, 2020, 11(1): 1055. doi:10.1038/s41467-020-14945-2 [37] Schroder K, Tschopp J. The inflammasomes[J]. Cell, 2010, 140(6): 821-832. doi:10.1016/j.cell.2010.01.040 [38] Ge X, Cai F, Shang Y, et al. PARK2 attenuates house dust mite-induced inflammatory reaction, pyroptosis and barrier dysfunction in BEAS-2B cells by ubiquitinating NLRP3[J]. Am J Transl Res, 2021, 13(1): 326-335. [39] Chen XF, Xiao Z, Jiang ZY, et al. Schisandrin B attenuates airway inflammation and airway remodeling in asthma by inhibiting NLRP3 inflammasome activation and reducing pyroptosis[J]. Inflammation, 2021, 44(6): 1-15. doi:10.1007/s10753-021-01494-z [40] 世界中医药学会联合会. 国际中医临床实践指南 慢性阻塞性肺疾病[J]. 世界中医药, 2020, 15(7): 1084-1092. doi:10.3969/j.issn.1673-7202.2020.07.026 LI Jiansheng, YU Xueqing, XIE Yang, et al. International clinical practice guideline of Chinese medicine chronic obstructive pulmonary disease[J]. World Chinese Medicine, 2020, 15(7): 1084-1092. doi:10.3969/j.issn.1673-7202.2020.07.026 [41] Dewan NA, Rafique S, Kanwar B, et al. Acute exacerbation of COPD: factors associated with poor treatment outcome[J]. Chest, 2000, 117(3): 662-671. doi:10.1378/chest.117.3.662 [42] Hirota JA, Gold MJ, Hiebert PR, et al. The nucleotide-binding domain, leucine-rich repeat protein 3 inflammasome/IL-1 receptor I axis mediates innate, but not adaptive, immune responses after exposure to particulate matter under 10 μm[J]. Am J Respir Cell Mol Biol, 2015, 52(1): 96-105. doi:10.1165/rcmb.2014-0158oc [43] Uh ST, Koo SM, Kim Y, et al. The activation of NLRP3-inflammsome by stimulation of diesel exhaust particles in lung tissues from emphysema model and RAW 264.7 cell line[J]. Korean J Intern Med, 2017, 32(5): 865-874. doi:10.3904/kjim.2016.033 [44] Zhang MY, Jiang YX, Yang YC, et al. Cigarette smoke extract induces pyroptosis in human bronchial epithelial cells through the ROS/NLRP3/caspase-1 pathway[J]. Life Sci, 2021, 269: 119090. doi:10.1016/j.lfs.2021.119090 [45] Wang L, Chen Q, Yu Q, et al. TREM-1 aggravates chronic obstructive pulmonary disease development via activation NLRP3 inflammasome-mediated pyroptosis[J]. Inflamm Res, 2021, 70(9): 971-980. doi:10.1007/s00011-021-01490-x [46] 陈昕, 林媛珍, 钟小宁. 细胞焦亡在慢性阻塞性肺疾病中的研究进展[J]. 重庆医科大学学报, 2020, 45(6): 703-707. doi:10.13406/j.cnki.cyxb.002322 |
[1] | 侯凌霄,展长翠,许安廷,范新泰,王娜. 鼻黏膜组织CD4+ T细胞参与季节性变应性鼻炎发病机制的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 96-104. |
[2] | 杨英玲,苟浩铖,冯俊. 细胞焦亡的分子机制及其在头颈部鳞状细胞癌中的研究现状[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 160-165. |
[3] | 翟睿,李园,于敬龙,陈溪,郑酉友,刘兆兰,王俊宏. 揿针治疗变应性鼻炎临床疗效的Meta分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 35-45. |
[4] | 敖天, 程雷. 慢性鼻窦炎伴鼻息肉的内型研究及其指导下的精准控制与治疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 7-14. |
[5] | 熊攀辉,沈暘,杨玉成. 基于表型和内在型的慢性鼻窦炎诊治进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 15-19. |
[6] | 姚爽,娄鸿飞. 慢性鼻窦炎的内在型研究进展及精准医疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 20-29. |
[7] | 石帅,郑泉,程雷. 度普利尤单抗在慢性鼻窦炎伴鼻息肉治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 36-42. |
[8] | 王欢,胡俐,余洪猛. 慢性鼻窦炎相关嗅觉功能障碍研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 43-49. |
[9] | 宜若男,陈福权. 嗜酸性粒细胞与嗅觉功能障碍[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 50-55. |
[10] | 谷钰,万鑫,肖自安. 中性粒细胞和嗜酸性粒细胞在慢性鼻窦炎中的相互影响及临床治疗思考[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 56-63. |
[11] | 林海,朱莹,张维天. 慢性鼻窦炎发病中离子通道作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 64-70. |
[12] | 乔新杰,赵玉林. 慢性鼻窦炎中上皮间质转化信号转导通路及其他相关因子的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 71-77. |
[13] | 黄丹怡,张婷,陈静,张薇. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83. |
[14] | 李佳倪,朱冬冬,孟粹达. 表观遗传学在慢性鼻窦炎伴鼻息肉发病机制中的作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 84-91. |
[15] | 曹轩,肖旭平,李云秋. 透明质酸在慢性鼻窦炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 104-109. |
|