山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (3): 143-148.doi: 10.6040/j.issn.1673-3770.0.2022.254

• 综述 • 上一篇    

阈值下微脉冲激光光凝作用机制及临床应用

唐慧新,李景景,邹红   

  1. 上海中医药大学附属曙光医院 眼科, 上海 201203
  • 发布日期:2023-05-24
  • 通讯作者: 邹红. E-mail:zouhong2007@126.com
  • 基金资助:
    国家自然科学基金面上项目(81874384);浦东新区卫建委联合攻关项目(PW2021D-03)

Mechanism and clinical applications of subthreshold diode micropulse laser

TANG Huixin, LI Jingjing, ZOU Hong   

  1. Department of Ophthalmology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
  • Published:2023-05-24

摘要: 阈值下微脉冲激光(subthneshold diode micropulse loser, SDML)是短时间内多次发射阈值下不连续的多个重复的能量脉冲的激光,目前可用于糖尿病视网膜病变、中心性浆液性脉络膜视网膜病变以及视网膜静脉阻塞继发的黄斑水肿等视网膜疾病中。与传统的激光相比较,SDML可更好地保留患者的视觉对比敏感度,减少视网膜下纤维化以及瘢痕形成等风险。目前的研究表明,其可以选择性的作用于视网膜色素上皮细胞、修复Müller细胞的功能、使小胶质细胞失活以及能降低血管内皮生长因子等炎症因子的表达以及上调色素上皮衍生因子等保护因子的表达等来抑制新生血管的形成并减轻黄斑水肿,从而达到保护视网膜功能,挽救患者视力的目的。但目前在临床运用中尚存在SDML治疗能量、时间、密度等参数未标准化以及分子机制未完全阐明等问题,因此仍旧需要更多的临床试验以及基础实验的研究。论文旨在对SDML的分子机制及其目前的临床应用进行综述,以期能为SDML在临床的应用提供参考。

关键词: 阈值下微脉冲激光, 分子机制, 临床应用, 糖尿病视网膜病变, 中心性浆液性脉络膜视网膜病变, 视网膜静脉阻塞

Abstract: The subthreshold diode micropulse laser(SDML)is a multiple repeated energy micropulse emitted by multiple thresholds within a short time. Currently, it can be used in retinal diseases, such as diabetic retinopathy, central serous chorioretinopathy, and retinal vein occlusion macular edema. The SDML can preserve the visual contrast sensitivity better than the traditional laser, reducing the risks of subretinal fibrosis and scar formation. The current research shows that it can selectively act on the retinal pigment epithelial, improve the function of Müller cells, inactivate microglia, reduce the expression of inflammatory factors such as the vascular endothelial growth factor, and up-regulate the expression of protective factors such as the pigment epithelium-derived factor to inhibit the formation of neovascularization and reduce macular edema to protect retinal function and preserve patients' vision. However, problems still exist in its clinical applications, such as the nonstandardization of the energy, time, density, and other parameters of SDML treatment and the unclear molecular mechanism. Therefore, further clinical trials and basic experimental studies are required. The purpose of this study is to review the molecular mechanism and current clinical applications of SDML to provide a reference for the clinical applications of SDML

Key words: Subthreshold diode micropulse laser, Molecular mechanism, Clinical application, Diabetic retinopathy, Central serous chorioretinopathy, Retinal vein occlusion

中图分类号: 

  • R774.1
[1] Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group[J]. Arch Ophthalmol, 1985, 103(12): 1796-1806.
[2] Schatz H, Madeira D, McDonald HR, et al. Progressive enlargement of laser scars following grid laser photocoagulation for diffuse diabetic macular edema[J]. Arch Ophthalmol, 1991, 109(11): 1549-1551. doi:10.1001/archopht.1991.01080110085041
[3] Guyer DR, D'Amico DJ, Smith CW. Subretinal fibrosis after laser photocoagulation for diabetic macular edema[J]. Am J Ophthalmol, 1992, 113(6): 652-656. doi:10.1016/s0002-9394(14)74789-0
[4] Fong DS, Girach A, Boney A. Visual side effects of successful scatter laser photocoagulation surgery for proliferative diabetic retinopathy: a literature review[J]. Retina, 2007, 27(7): 816-824. doi:10.1097/IAE.0b013e318042d32c
[5] Maturi RK, Glassman AR, Liu D, et al. Effect of adding dexamethasone to continued ranibizumab treatment in patients with persistent diabetic macular edema: a DRCR network phase 2 randomized clinical trial[J]. JAMA Ophthalmol, 2018, 136(1): 29-38. doi:10.1001/jamaophthalmol.2017.4914
[6] Schmidt-Erfurth U, Garcia-Arumi J, Bandello F, et al. Guidelines for the management of diabetic macular edema by the European society of Retina specialists(EURETINA)[J]. Ophthalmologica, 2017, 237(4): 185-222. doi:10.1159/000458539
[7] Teja S, Sawatzky L, Wiens T, et al. Ozurdex for refractory macular edema secondary to diabetes, vein occlusion, uveitis and pseudophakia[J]. Can J Ophthalmol, 2019, 54(5): 540-547. doi:10.1016/j.jcjo.2018.12.005
[8] Roider J, Hillenkamp F, Flotte T, et al. Microphotocoagulation: selective effects of repetitive short laser pulses[J]. Proc Natl Acad Sci USA, 1993, 90(18): 8643-8647. doi:10.1073/pnas.90.18.8643
[9] Pankratov MM. Pulsed delivery of laser energy in experimental thermal retinal photocoagulation[C] //OE/LASE '90. Proc SPIE 1202, Laser-Tissue Interaction, Los Angeles, CA, USA. 1990, 1202: 205-213. doi:10.1117/12.17626
[10] Stanga PE, Reck AC, Hamilton AMP. Micropulse laser in the treatment of diabetic macular edema[J]. Semin Ophthalmol, 1999, 14(4): 210-213. doi:10.3109/08820539909069539
[11] Scholz P, Altay L, Fauser S. A review of subthreshold micropulse laser for treatment of macular disorders[J]. Adv Ther, 2017, 34(7): 1528-1555. doi:10.1007/s12325-017-0559-y
[12] Li ZY, Song YP, Chen X, et al. Biological modulation of mouse RPE cells in response to subthreshold diode micropulse laser treatment[J]. Cell Biochem Biophys, 2015, 73(2): 545-552. doi:10.1007/s12013-015-0675-8
[13] 梁燕华. 阈值下810 nm微脉冲激光对糖尿病大鼠视网膜病变治疗机制的研究[D]. 广州: 南方医科大学, 2016.
[14] Uemura A, Fruttiger M, D’Amore PA, et al. VEGFR1 signaling in retinal angiogenesis and microinflammation[J]. Prog Retin Eye Res, 2021, 84: 100954. doi:10.1016/j.preteyeres.2021.100954
[15] Inagaki K, Shuo T, Katakura K, et al. Sublethal photothermal stimulation with a micropulse laser induces heat shock protein expression in ARPE-19 cells[J]. J Ophthalmol, 2015: 729792. doi:10.1155/2015/729792
[16] Piri N, Kwong JMK, Gu L, et al. Heat shock proteins in the Retina: focus on HSP70 and alpha crystallins in ganglion cell survival[J]. Prog Retin Eye Res, 2016, 52: 22-46. doi:10.1016/j.preteyeres.2016.03.001
[17] Hirabayashi K, Kakihara S, Tanaka M, et al. Investigation of the therapeutic mechanism of subthreshold micropulse laser irradiation in Retina[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(5): 1039-1047. doi:10.1007/s00417-020-04638-3
[18] Midena E, Bini S, Martini F, et al. Changes of aqueous humor müller cells' blomarkers in human patients affected by diabetic macular edema after subthreshold micropulse laser treatment. Retina[J]. 2020, 40(1): 126-134. doi: 10.1097/IAE.0000000000002356
[19] Li XY, Lv JJ, Li JZ, et al. Kir4.1 may represent a novel therapeutic target for diabetic retinopathy(Review)[J]. Exp Ther Med, 2021, 22(3): 1021. doi:10.3892/etm.2021.10453
[20] Li L, Eter N, Heiduschka P. The microglia in healthy and diseased Retina[J]. Exp Eye Res, 2015, 136: 116-130. doi:10.1016/j.exer.2015.04.020
[21] Grigsby JG, Cardona SM, Pouw CE, et al. The role of microglia in diabetic retinopathy[J]. J Ophthalmol, 2014(1): 705783. doi:10.1155/2014/705783
[22] Midena E, Micera A, Frizziero L, et al. Sub-threshold micropulse laser treatment reduces inflammatory biomarkers in aqueous humour of diabetic patients with macular edema[J]. Sci Rep, 2019, 9(1): 10034. doi:10.1038/s41598-019-46515-y
[23] Lavinsky D, Sramek C, Wang J, et al. Subvisible retinal laser therapy: titration algorithm and tissue response[J]. Retina, 2014, 34(1): 87-97. doi:10.1097/IAE.0b013e3182993edc
[24] Friberg TR, Karatza EC. The treatment of macular disease using a micropulsed and continuous wave 810-nm diode laser[J]. Ophthalmology, 1997, 104(12): 2030-2038. doi:10.1016/s0161-6420(97)30061-x
[25] Stanga PE, Reck AC, Hamilton AM. Micropulse laser in the treatment of diabetic macular edema[J]. Semin Ophthalmol, 1999, 14(4): 210-213. doi:10.3109/08820539909069539
[26] Chen GH, Tzekov R, Li WS, et al. Subthreshold micropulse diode laser versus conventional laser photocoagulation for diabetic macular edema: a meta-analysis of randomized controlled trials[J]. Retina, 2016, 36(11): 2059-2065. doi:10.1097/IAE.0000000000001053
[27] Qiao G, Guo HK, Dai Y, et al. Sub-threshold micro-pulse diode laser treatment in diabetic macular edema: a Meta-analysis of randomized controlled trials[J]. Int J Ophthalmol, 2016, 9(7): 1020-1027. doi:10.18240/ijo.2016.07.15
[28] Akhlaghi M, Dehghani A, Pourmohammadi R, et al. Effects of subthreshold diode micropulse laser photocoagulation on treating patients with refractory diabetic macular edema[J]. J Curr Ophthalmol, 2018, 31(2): 157-160. doi:10.1016/j.joco.2018.11.006
[29] Moisseiev E, Abbassi S, Thinda S, et al. Subthreshold micropulse laser reduces anti-VEGF injection burden in patients with diabetic macular edema[J]. Eur J Ophthalmol, 2018, 28(1): 68-73. doi:10.5301/ejo.5001000
[30] van Rijssen TJ, van Dijk EHC, Yzer S, et al. Central serous chorioretinopathy: towards an evidence-based treatment guideline[J]. Prog Retin Eye Res, 2019, 73: 100770. doi:10.1016/j.preteyeres.2019.07.003
[31] Mohabati D, van Rijssen TJ, van Dijk EH, et al. Clinical characteristics and long-term visual outcome of severe phenotypes of chronic central serous chorioretinopathy[J]. Clin Ophthalmol, 2018, 12: 1061-1070. doi:10.2147/OPTH.S160956
[32] Otsuka S, Ohba N, Nakao K. A long-term follow-up study of severe variant of central serous chorioretinopathy[J]. Retina, 2002, 22(1): 25-32. doi:10.1097/00006982-200202000-00005
[33] Yannuzzi LA, Shakin JL, Fisher YL, et al. Peripheral retinal detachments and retinal pigment epithelial atrophic tracts secondary to central serous pigment epitheliopathy. 1984[J]. Retina, 2012, 32(1): 1554-1572. doi:10.1097/iae.0b013e3182434da4
[34] Malik KJ, Sampat KM, Mansouri A, et al. Low-intensity/high-density subthreshold microPulse diode laser for chronic central serous chorioretinopathy[J]. Retina, 2015, 35(3): 532-536. doi:10.1097/IAE.0000000000000285
[35] Luttrull JK. Low-intensity/high-density subthreshold diode micropulse laser for central serous chorioretinopathy[J]. Retina, 2016, 36(9): 1658-1663. doi:10.1097/IAE.0000000000001005
[36] Koss MJ, Beger I, Koch FH. Subthreshold diode laser micropulse photocoagulation versus intravitreal injections of bevacizumab in the treatment of central serous chorioretinopathy[J]. Eye(Lond), 2012, 26(2): 307-314. doi:10.1038/eye.2011.282
[37] van Dijk EHC, Fauser S, Breukink MB, et al. Half-dose photodynamic therapy versus high-density subthreshold micropulse laser treatment in patients with chronic central serous chorioretinopathy: the PLACE trial[J]. Ophthalmology, 2018, 125(10): 1547-1555. doi:10.1016/j.ophtha.2018.04.021
[38] Arora S, Sridharan P, Arora T, et al. Subthreshold diode micropulse laser versus observation in acute central serous chorioretinopathy[J]. Clin Exp Optom, 2019, 102(1): 79-85. doi:10.1111/cxo.12818
[39] Parodi MB, Spasse S, Iacono P, et al. Subthreshold grid laser treatment of macular edema secondary to branch retinal vein occlusion with micropulse infrared(810 nanometer)diode laser[J]. Ophthalmology, 2006, 113(12): 2237-2242. doi:10.1016/j.ophtha.2006.05.056
[40] Parodi MB, Iacono P, Ravalico G. Intravitreal triamcinolone acetonide combined with subthreshold grid laser treatment for macular oedema in branch retinal vein occlusion: a pilot study[J]. Br J Ophthalmol, 2008, 92(8): 1046-1050. doi:10.1136/bjo.2007.128025
[41] Inagaki K, Ohkoshi K, Ohde S, et al. Subthreshold micropulse photocoagulation for persistent macular edema secondary to branch retinal vein occlusion including best-corrected visual acuity greater than 20/40[J]. J Ophthalmol, 2014, 2014: 251257. doi:10.1155/2014/251257
[42] 陈懿, 陈青山, 罗恒, 等. 微脉冲激光联合抗VEGF药物治疗BRVO继发的黄斑水肿[J]. 国际眼科杂志, 2017, 17(6): 1184-1187. doi:10.3980/j.issn.1672-5123.2017.6.48 CHEN Yi, CHEN Qingshan, LUO Heng, et al. Subthreshold micropulse laser photocoagulation with intravitreous anti-VEGF for macular edema secondary to branch retinal vein occlusion[J]. International Eye Science, 2017, 17(6): 1184-1187. doi:10.3980/j.issn.1672-5123.2017.6.48
[43] Kumar A, Kumar P, Ambiya V, et al. Subthreshold micropulse laser for adult onset Coats' associated exudative maculopathy[J]. Eur J Ophthalmol, 2022, 32(5): NP29-NP31. doi:10.1177/11206721211005691
[44] 陈彦茹, 李明翰, 黎晓新. 577 nm阈值下微脉冲激光治疗息肉样脉络膜血管病变临床疗效观察[J]. 航空航天医学杂志, 2020, 31(11): 1287-1290. doi: 10.3969/j.issn.2095-1434.2020.11.002 CHEN Yanru, LI Minghan, LI Xiaoxin. The clinical effect of 577 nm subthreshold micropulse laser on polypoidal choroidal vasculopathy[J]. Journal of Aerospace Medicine, 2020, 31(11): 1287-1290. doi: 10.3969/j.issn.2095-1434.2020.11.002
[45] 王仙, 李颖, 赵博军. 息肉样脉络膜血管病变诊疗进展[J]. 山东大学耳鼻喉眼学报, 2018, 32(2): 103-106. doi:10.6040/j.issn.1673-3770.0.2017.543 WANG Xian, LI Ying, ZHAO Bojun. Advances in diagnosis and treatment of polypoid choroidal vasculopathy[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(2): 103-106. doi:10.6040/j.issn.1673-3770.0.2017.543
[46] 钟雯, 喻晓兵, 戴虹. 全黄斑覆盖微脉冲激光治疗继发于Irvine-Gass综合征的难治性黄斑水肿疗效观察[J]. 中华眼底病杂志, 2021(8): 594-598. doi: 10.3760/cma.j.cn511434-20201027-00508 ZHONG Wen, YU Xiaobing, DAI Hong. Observation of the curative effect of full macular coverage micropulse laser in the treatment of refractory macular edema secondary to Irvine-Gass syndrome[J]. Chinese Journal of Ocular Fundus Diseases, 2021(8): 594-598. doi: 10.3760/cma.j.cn511434-20201027-00508
[1] 张华秀,刘琴,罗五根,杨健, 陈灵云. 新型颈托式受水器在外耳道冲洗中的临床应用效果研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 7-10.
[2] 李璐,赵杰,赵博军. 中心性浆液性脉络膜视网膜病变的发病机制与治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 118-124.
[3] 刘通,林玮,冯萌,杨依,刘婷婷,张敏. 基于网络药理学分析小檗碱在免疫微环境中对糖尿病视网膜病变的作用及实验验证[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 94-104.
[4] 顾冉冉,李凤娇,焦万珍,崔艳艳,赵博军. 卵磷脂络和碘胶囊辅助治疗视网膜静脉阻塞的临床疗效研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 46-50.
[5] 王娇娇,李苗宋宗明. 糖尿病视网膜病变的机制和细胞模型研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 93-99.
[6] 王惠, 王俊,孙乙,于腾飞,朱玉广, 朱艳. 玻璃体腔注射HGF-MSCs对糖尿病大鼠视网膜HGF表达的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 72-77.
[7] 海玥,廖萱. Catquest-9SF的研究进展及临床应用[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 142-146.
[8] 刘志高,王淑雅,韩旭光,王玉,李志伟,马爱华,赵博军. 增殖性糖尿病视网膜病变术前玻璃体腔应用阿柏西普的时机及其疗效观察[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 99-103.
[9] 杨秀芬,尤冉,马秀梅,王康,王艳玲. 以医院为基础的中心性浆液性脉络膜视网膜病变流行病学调查及危险因素的研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 75-79.
[10] 青晓艳,徐义全,李超. 甲状腺未分化癌的分子机制研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 26-31.
[11] 韩克阳,于贝贝,赵博军. 短期视网膜静脉阻塞抗VEGF治疗后黄斑区形态结构分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 129-131.
[12] 申宇鹏,宋琦,李晓明. 喉癌前病变的病因、分子机制和处理策略[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 25-30.
[13] 陈芝文,程雷. 鼻呼出气一氧化氮的检测及临床应用[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 124-128.
[14] 刘建波,张环. 超声乳化联合玻璃体腔药物注射治疗白内障合并糖尿病性黄斑水肿[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 99-104.
[15] 李宝华,刘平,王新. β-榄香烯影响糖尿病大鼠视网膜中IL-1β、ICAM-1表达分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 111-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!