山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (3): 157-162.doi: 10.6040/j.issn.1673-3770.0.2022.374

• 综述 • 上一篇    

人工智能辅助早产儿视网膜病变诊疗新进展

杜曰山一1,2,王鲜3,张国明1,2   

  1. 1. 贵州医科大学 临床医学院, 贵州 贵阳 550004;
    2. 深圳市眼科医院/暨南大学附属深圳眼科医院/深圳市眼病防治研究所, 广东 深圳 518040;
    3. 贵州医科大学附属医院 眼科, 贵州 贵阳 550004
  • 发布日期:2023-05-24
  • 通讯作者: 张国明. E-mail:zhang-guoming@163.com
  • 基金资助:
    国家自然科学基金资助项目(82271103);广东省基础与应用基础研究基金项目(2022A1515012326);深圳市医学重点学科建设经费资助项目(SZXK038);广东省高水平临床重点专科(深圳市配套建设经费)资助项目(SZGSP014);深港联合资助项目(A类)(SGDX20190920110403741)

Progress in the diagnosis and treatment of retinopathy of prematurity using artificial intelligence

DU Yueshanyi1,2, WANG Xian3, ZHANG Guoming1,2   

  1. 1. Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou, China;
    2. Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong, China;
    3. Department of Ophthalmology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
  • Published:2023-05-24

摘要: 早产儿视网膜病变(retinopathy of prematurity, ROP)是导致儿童致盲的主要原因之一,早期ROP筛查和诊断高度依赖眼科专科医生,而随着现代医学影像技术的飞速发展和远程医疗的兴起,人工智能(artificial intelligence, AI)在ROP领域也得到了进一步应用。近年来,基于卷积神经网络、深度学习的AI在眼科筛查检测、诊疗领域得到更广泛深入地应用,其在ROP的临床诊疗方面尤引人注目,有望提高基层儿科和眼科医生对ROP早期诊断、规范治疗等方面的能力,同时降低主管医生之间的主观差异。论文概述AI在ROP自动筛查检测、诊断及预测的研究现状、存在的不足及面临的挑战,进一步了解其在ROP临床应用新动态和新进展。

关键词: 早产儿视网膜病变, 人工智能, 深度学习, 自动筛查, 诊断, 预测

Abstract: Retinopathy of prematurity(ROP)is one of the main causes of blindness in children, while early screening and diagnosis of ROP are highly dependent on ophthalmologists. With the rapid development of modern medical imaging technology and the rise of telemedicine, artificial intelligence(AI)has also been further applied in the field of ROP. In recent years, AI based on neural convolutional network and deep learning has been applied in the field of eye screening, disease detection, diagnosis and treatment, especially for the clinical diagnosis and treatment of ROP. It is expected that AI will aid primary pediatricians and ophthalmologists in early diagnosis and standardized treatment of ROP, and reduce the subjective differences among first-line doctors. This review summarizes the current status, shortcomings, and challenges faced by AI in automated ROP screening, diagnosis, and prediction, which enables the further understanding of new trends and progressment made by its clinical application in ROP.

Key words: Retinopathy of prematurity, Artificial intelligence, Deep learning, Automated screening, Diagnosis, Prediction

中图分类号: 

  • R779.7
[1] Solebo AL, Teoh L, Rahi J. Epidemiology of blindness in children[J]. Arch Dis Child, 2017, 102(9): 853-857. doi:10.1136/archdischild-2016-310532
[2] Li JP O, Liu HR, Ting DSJ, et al. Digital technology, tele-medicine and artificial intelligence in ophthalmology: a global perspective[J]. Prog Retin Eye Res, 2021, 82: 100900. doi:10.1016/j.preteyeres.2020.100900
[3] Wu T, Zhang L, Tong Y, et al. Retinopathy of prematurity among very low-birth-weight infants in China: incidence and perinatal risk factors[J]. Invest Ophthalmol Vis Sci, 2018, 59(2): 757-763. doi:10.1167/iovs.17-23158
[4] 黎晓新. 我国早产儿视网膜病变特点和筛查指南[J]. 中华眼底病杂志, 2004(6): 384-386. LI Xiaoxin. Characteristics and screening guidelines of retinopathy of prematurity in China[J]. Chinese Journal of Ocular Fundus Diseases, 2004(6): 384-386.
[5] Du XL, Li WB, Hu BJ. Application of artificial intelligence in ophthalmology[J]. Int J Ophthalmol, 2018, 11(9): 1555-1561. doi:10.18240/ijo.2018.09.21
[6] 刘潇逸, 项毅帆, 杨扬帆, 等. 婴幼儿眼病的人工智能应用[J]. 眼科学报, 2022, 37(3): 214-221. LIU Xiaoyi, XIANG Yifan, YANG Yangfan, et al. Artificial intelligence application for infantile eye diseases[J]. Eye Science, 2022, 37(3): 214-221.
[7] 华红利, 李松, 陶泽璋. 人工智能在鼻咽癌诊疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 113-119. doi: 10.6040/j.issn.1673-3770.0.2021.175 HUA Hongli, LI Song, TAO Zezhang. Research progress of artificial intelligence in the diagnosis and treatment of nasopharyngeal carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 113-119. doi: 10.6040/j.issn.1673-3770.0.2021.175
[8] 朱志玲, 李松, 管国芳. 人工智能在耳鼻咽喉头颈外科的运用及展望[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 115-120. doi: 10.6040/j.issn.1673-3770.0.2019.598 ZHU Zhiling, LI Song, GUAN Guofang. Application and prospect of artificial intelligence in otolaryngology[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(2): 115-120. doi: 10.6040/j.issn.1673-3770.0.2019.598
[9] Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410. doi:10.1001/jama.2016.17216
[10] De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease[J]. Nat Med, 2018, 24(9): 1342-1350. doi:10.1038/s41591-018-0107-6
[11] Ting DSW, Cheung CYL, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318(22): 2211-2223. doi:10.1001/jama.2017.18152
[12] 林浩添, 李龙辉, 陈睛晶. 儿童眼病的人工智能研究进展[J]. 山东大学学报(医学版), 2020, 58(11): 11-16. doi:10.6040/j.issn.1671-7554.0.2020.1173 LIN Haotian, LI Longhui, CHEN Jingjing. Research progress of artificial intelligence in childhood eye diseases[J]. Journal of Shandong University(Health Science), 2020, 58(11): 11-16. doi:10.6040/j.issn.1671-7554.0.2020.1173
[13] Wallace DK, Zhao ZE, Freedman SF. A pilot study using “ROPtool” to quantify plus disease in retinopathy of prematurity[J]. J Am Assoc Pediatr Ophthalmol Strabismus, 2007, 11(4): 381-387. doi:10.1016/j.jaapos.2007.04.008
[14] Heneghan C, Flynn J, O'Keefe M, et al. Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis[J]. Med Image Anal, 2002, 6(4): 407-429. doi:10.1016/S1361-8415(02)00058-0
[15] Rabinowitz MP, Grunwald JE, Karp KA, et al. Progression to severe retinopathy predicted by retinal vessel diameter between 31 and 34 weeks of postconception age[J]. Arch Ophthalmol, 2007, 125(11): 1495-1500. doi:10.1001/archopht.125.11.1495
[16] Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136(7): 803-810. doi:10.1001/jamaophthalmol.2018.1934
[17] Choi RY, Brown JM, Kalpathy-Cramer J, et al. Variability in plus disease identified using a deep learning-based retinopathy of prematurity severity scale[J]. Ophthalmol Retina, 2020, 4(10): 1016-1021. doi:10.1016/j.oret.2020.04.022
[18] Campbell JP, Kim SJ, Brown JM, et al. Evaluation of a deep learning-derived quantitative retinopathy of prematurity severity scale[J]. Ophthalmology, 2021, 128(7): 1070-1076. doi:10.1016/j.ophtha.2020.10.025
[19] Taylor S, Brown JM, Gupta K, et al. Monitoring disease progression with a quantitative severity scale for retinopathy of prematurity using deep learning[J]. JAMA Ophthalmol, 2019, 137(9): 1022-1028. doi:10.1001/jamaophthalmol.2019.2433
[20] Gupta K, Campbell JP, Taylor S, et al. A quantitative severity scale for retinopathy of prematurity using deep learning to monitor disease regression after treatment[J]. JAMA Ophthalmol, 2019, 137(9): 1029-1036. doi:10.1001/jamaophthalmol.2019.2442
[21] Bellsmith KN, Brown J, Kim SJ, et al. Aggressive posterior retinopathy of prematurity: clinical and quantitative imaging features in a large North American cohort[J]. Ophthalmology, 2020, 127(8): 1105-1112. doi:10.1016/j.ophtha.2020.01.052
[22] Campbell JP, Chiang MF, Chen JS, et al. Artificial intelligence for retinopathy of prematurity: validation of a vascular severity scale against international expert diagnosis[J]. Ophthalmology, 2022, 129(7): e69-e76. doi:10.1016/j.ophtha.2022.02.008
[23] Chiang MF, Quinn GE, Fielder AR, et al. International classification of retinopathy of prematurity, third edition[J]. Ophthalmology, 2021, 128(10): e51-e68. doi:10.1016/j.ophtha.2021.05.031
[24] International Committee for the Classification of Retinopathy of Prematurity. The international classification of retinopathy of prematurity revisited[J]. Arch Ophthalmol, 2005, 123(7): 991-999. doi:10.1001/archopht.123.7.991
[25] 郭宝, 张德勇. 康柏西普联合激光治疗急进性早产儿视网膜病变[J]. 山东大学耳鼻喉眼学报, 2018, 32(6): 92-97. doi:10.6040/j.issn.1673-3770.0.2018.272 GUO Bao, ZHANG Deyong. Clinical study of compaq combined with laser in the treatment of retinopathy of prematurity[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(6): 92-97. doi:10.6040/j.issn.1673-3770.0.2018.272
[26] Zhao JF, Lei BY, Wu ZQ, et al. A deep learning framework for identifying zone I in RetCam images[J]. IEEE Access, 2019, 7: 103530-103537. doi:10.1109/ACCESS.2019.2930120
[27] Zhang RG, Zhao JF, Chen GZ, et al. Aggressive Posterior Retinopathy of Prematurity Automated Diagnosis via a Deep Convolutional Network[C] //International Workshop on Ophthalmic Medical Image Analysis. Cham: Springer, 2019: 165-172.10.1007/978-3-030-32956-3_20
[28] Agrawal R, Kulkarni S, Walambe R, et al. Assistive framework for automatic detection of all the zones in retinopathy of prematurity using deep learning[J]. J Digit Imaging, 2021, 34(4): 932-947. doi:10.1007/s10278-021-00477-8
[29] Peng YY, Chen ZY, Zhu WF, et al. Automatic zoning for retinopathy of prematurity with semi-supervised feature calibration adversarial learning[J]. Biomed Opt Express, 2022, 13(4): 1968-1984. doi:10.1364/BOE.447224
[30] Ng WY, Zhang SH, Wang ZR, et al. Updates in deep learning research in ophthalmology[J]. Clin Sci(Lond), 2021, 135(20): 2357-2376. doi:10.1042/CS20210207
[31] Peng YY, Zhu WF, Chen ZY, et al. Automatic staging for retinopathy of prematurity with deep feature fusion and ordinal classification strategy[J]. IEEE Trans Med Imaging, 2021, 40(7): 1750-1762. doi:10.1109/TMI.2021.3065753
[32] Attallah O. DIAROP: automated deep learning-based diagnostic tool for retinopathy of prematurity[J]. Diagnostics(Basel), 2021, 11(11): 2034. doi:10.3390/diagnostics11112034
[33] Hu JJ, Chen YY, Zhong J, et al. Automated analysis for retinopathy of prematurity by deep neural networks[J]. IEEE Trans Med Imaging, 2019, 38(1): 269-279. doi:10.1109/TMI.2018.2863562
[34] Wang JY, Ju R, Chen YY, et al. Automated retinopathy of prematurity screening using deep neural networks[J]. EBioMedicine, 2018, 35: 361-368. doi:10.1016/j.ebiom.2018.08.033
[35] Zhang YS, Wang L, Wu ZQ, et al. Development of an automated screening system for retinopathy of prematurity using a deep neural network for wide-angle retinal images[J]. IEEE Access, 2018, 7: 10232-10241. doi:10.1109/ACCESS.2018.2881042
[36] Wu QW, Hu YJ, Mo ZY, et al. Development and validation of a deep learning model to predict the occurrence and severity of retinopathy of prematurity[J]. JAMA Netw Open, 2022, 5(6): e2217447. doi:10.1001/jamanetworkopen.2022.17447
[37] Iu LPL, Yip WWK, Lok JYC, et al. Prediction model to predict type 1 retinopathy of prematurity using gestational age and birth weight(PW-ROP)[J]. Br J Ophthalmol, 2022: bjophthalmol-2021-320670. doi:10.1136/bjophthalmol-2021-320670
[38] Coyner AS, Chen JS, Singh P, et al. Single-examination risk prediction of severe retinopathy of prematurity[J]. Pediatrics, 2021, 148(6): e2021051772. doi:10.1542/peds.2021-051772
[39] Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Artificial intelligence in retina[J]. Prog Retin Eye Res, 2018, 67: 1-29. doi:10.1016/j.preteyeres.2018.07.004
[1] 韩飞燕,王英. 鼻腔鼻窦神经鞘瘤13例临床分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 21-25.
[2] 刘佳钰,樊慧明,邹游,陈始明. 人工智能在鼻咽癌诊断与治疗中的应用研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 135-142.
[3] 肖富亮,林云,潘新良. 早期cN0 PTC预防性中央区淋巴结清扫的临床研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 64-71.
[4] 程雷,许秋艳,陈浩. 变态反应检测与诊断的临床应用及意义[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 1-6.
[5] 熊攀辉,沈暘,杨玉成. 基于表型和内在型的慢性鼻窦炎诊治进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 15-19.
[6] 华红利,李松,陶泽璋. 人工智能在鼻咽癌诊疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 113-119.
[7] 芦晓妍, 温树信. 先天性后鼻孔闭锁的治疗进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 138-142.
[8] 黄天泽,陈迪,李莹. 机器学习在眼表疾病诊断及角膜手术中的应用进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 13-19.
[9] 万怡宁,张德军,傅则名,郭芳,郭颖媛,管国芳. 磁共振弥散加权成像在先天性中耳胆脂瘤精准诊断与JOS分期中的应用探讨12例[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 65-69.
[10] 王迪,程金章,于丹. 基于机器学习的人工智能技术在耳鼻喉科临床诊疗中的应用进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 125-131.
[11] 刘寨,应民政. 环状RNA在变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 105-112.
[12] 冉宏运,蒋可可,张杰. 早产儿视网膜病变患儿屈光影响因素研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 118-124.
[13] 吴迪盼盼,崔新华,郭颖,耿博,高芳芳,梁辉. 窄带成像技术在咽喉反流诊断中的优势应用[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 31-36.
[14] 季颜平,薛宇,林岚. 头颈部结节性筋膜炎临床病理分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 76-79.
[15] 袁康龙,肖旭平. 坏死性颈筋膜炎的临床诊治进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 135-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!