山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (1): 79-86.doi: 10.6040/j.issn.1673-3770.0.2022.428
朱晗1,2,3,4,刘雪霞5,张华2,3,4
ZHU Han1,2,3,4, LIU Xuexia5, ZHANG Hua2,3,4
摘要: 自噬是一种进化上高度保守的分解代谢过程,在细胞的生长发育、机体的先天性和适应性免疫方面以及程序性细胞死亡中均发挥关键作用。近年来,自噬成为在免疫、肿瘤等各方面的研究热点,且越来越多研究证据表明自噬相关基因表达量的改变可以通过对炎症因子的调节参与过敏性炎症的发病,并可针对自噬进行相关治疗。已有新的研究表明自噬通过调节T细胞的活化与功能、影响呼吸道上皮纤维化等途径参与变异性鼻炎(allergic rhinitis, AR)的发病。AR作为一种全球性的变应性疾病,暂无有效针对性治疗方法。通过学习总结,将针对自噬对过敏性炎症的发病机制及治疗以及在AR作用进行综述,以期为自噬作为AR的诊疗靶点提供新的策略。
中图分类号:
[1] 古丽白热木·玉素因, 毛艳, 刘燕, 等. TLRs介导的炎症信号通路与变应性鼻炎发病机制研究进展[J]. 医学综述, 2020, 26(1): 50-53, 58. doi:10.3969/j.issn.1006-2084.2020.01.010 GULIBAIREMU·Yusuyin, MAO Yan, LIU Yan, et al. Research progress in TLRs-mediated inflammatory signaling pathways and pathogenesis of allergic rhinitis[J]. Medical Recapitulate, 2020, 26(1): 50-53, 58. doi:10.3969/j.issn.1006-2084.2020.01.010 [2] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组,中华医学会耳鼻咽喉头颈外科学分会鼻科学组.中国变应性鼻炎诊断和治疗指南(2022年, 修订版)[J].中华耳鼻咽喉头颈外科杂志, 2022, 57(2): 106-129. doi:10.3760/cma.j.cn115330-20211228-00828 [3] Li W, He PC, Huang YG, et al. Selective autophagy of intracellular organelles: recent research advances[J]. Theranostics, 2021, 11(1): 222-256. doi:10.7150/thno.49860 [4] Zhao HY, Dong F, Li YH, et al. Inhibiting ATG5 mediated autophagy to regulate endoplasmic reticulum stress and CD4+ T lymphocyte differentiation: mechanisms of acupuncture's effects on asthma[J]. Biomedecine Pharmacother, 2021, 142: 112045. doi:10.1016/j.biopha.2021.112045 [5] Hailfinger S, Schulze-Osthoff K. Impaired autophagy in psoriasis and atopic dermatitis: a new therapeutic target?[J]. J Invest Dermatol, 2021, 141(12): 2775-2777. doi:10.1016/j.jid.2021.06.006 [6] D'Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biol Int, 2019, 43(6): 582-592. doi:10.1002/cbin.11137 [7] 段玉珊, 刘琼. 自噬在肺部炎症性疾病中的研究新进展[J]. 重庆医科大学学报, 2017, 42(1): 7-10. doi:10.13406/j.cnki.cyxb.001156 DUAN Yushan, LIU Qiong. Research progress of autophagy in lung inflammatory diseases[J]. Journal of Chongqing Medical University, 2017, 42(1): 7-10. doi:10.13406/j.cnki.cyxb.001156 [8] Liang S, Wu YS, Li DY, et al. Autophagy and renal fibrosis[J]. Aging Dis, 2022, 13(3): 712-731. doi:10.14336/AD.2021.1027 [9] 汝少国, 朱增光, 崔鹏飞. 细胞自噬与应激反应[J]. 中国海洋大学学报(自然科学版), 2022, 52(7): 1-13. doi:10.16441/j.cnki.hdxb.20210192 RU Shaoguo, ZHU Zengguang, CUI Pengfei. Cellular autophagy and stress response[J]. Periodical of Ocean University of China, 2022, 52(7): 1-13. doi:10.16441/j.cnki.hdxb.20210192 [10] Manganelli V, Matarrese P, Antonioli M, et al. Raft-like lipid microdomains drive autophagy initiation via AMBRA1-ERLIN1 molecular association within MAMs[J]. Autophagy, 2021, 17(9): 2528-2548. doi:10.1080/15548627.2020.1834207 [11] Sawa-Makarska J, Baumann V, Coudevylle N, et al. Reconstitution of autophagosome nucleation defines Atg9 vesicles as seeds for membrane formation[J]. Science, 2020, 369(6508): eaaz7714. doi:10.1126/science.aaz7714 [12] Yu L, Chen Y, Tooze SA. Autophagy pathway: cellular and molecular mechanisms[J]. Autophagy, 2018, 14(2): 207-215. doi:10.1080/15548627.2017.1378838 [13] Qureshi-Baig K, Kuhn D, Viry E, et al. Hypoxia-induced autophagy drives colorectal cancer initiation and progression by activating the PRKC/PKC-EZR(ezrin)pathway[J]. Autophagy, 2020, 16(8): 1436-1452. doi:10.1080/15548627.2019.1687213 [14] Galluzzi L, Bravo-San Pedro JM, Levine B, et al. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles[J]. Nat Rev Drug Discov, 2017, 16(7): 487-511. doi:10.1038/nrd.2017.22 [15] Klapan K, Frange Ž, Markov N, et al. Evidence for Lysosomal Dysfunction within the Epidermis in Psoriasis and Atopic Dermatitis[J]. J Invest Dermatol, 2021, 141(12): 2838-2848.e4. doi: 10.1016/j.jid.2021.05.016 [16] Hou TH, Sun XY, Zhu J, et al. IL-37 ameliorating allergic inflammation in atopic dermatitis through regulating microbiota and AMPK-mTOR signaling pathway-modulated autophagy mechanism[J]. Front Immunol, 2020, 11: 752. doi:10.3389/fimmu.2020.00752 [17] Guo J, Peng L, Zeng JH, et al. Paeoniflorin suppresses allergic and inflammatory responses by promoting autophagy in rats with urticaria[J]. Exp Ther Med, 2021, 21(6): 590. doi:10.3892/etm.2021.10022 [18] Lv XX, Li K, Hu ZW. Asthma and autophagy[J]. Adv Exp Med Biol, 2020, 1207: 581-584. doi:10.1007/978-981-15-4272-5_41 [19] Li YH, Liu JX, Cui YY, et al. Sodium butyrate attenuates bovine mammary epithelial cell injury by inhibiting the formation of neutrophil extracellular traps[J]. Int Immunopharmacol, 2022, 110: 109009. doi:10.1016/j.intimp.2022.109009 [20] Silveira JS, Antunes GL, Kaiber DB, et al. Autophagy induces eosinophil extracellular traps formation and allergic airway inflammation in a murine asthma model[J]. J Cell Physiol, 2020, 235(1): 267-280. doi:10.1002/jcp.28966 [21] Hailfinger S, Schulze-Osthoff K. Impaired autophagy in psoriasis and atopic dermatitis: a new therapeutic target?[J]. J Invest Dermatol, 2021, 141(12): 2775-2777. doi:10.1016/j.jid.2021.06.006 [22] Eschenbacher W, Straesser M, Knoeddler A, et al. Biologics for the treatment of allergic rhinitis, chronic rhinosinusitis, and nasal polyposis[J]. Immunol Allergy Clin North Am, 2020, 40(4): 539-547. doi:10.1016/j.iac.2020.06.001 [23] Mao DH, He ZM, Li LL, et al. Recent progress in traditional Chinese medicines and their mechanism in the treatment of allergic rhinitis[J]. J Healthc Eng, 2022, 2022: 3594210. doi:10.1155/2022/3594210 [24] Cheng L, Zhou WC. Sublingual immunotherapy of house dust mite respiratory allergy in China[J]. Allergol Immunopathol, 2019, 47(1): 85-89. doi:10.1016/j.aller.2018.02.008 [25] Han SW, Sun L, He F, et al. Anti-allergic activity of glycyrrhizic acid on IgE-mediated allergic reaction by regulation of allergy-related immune cells[J]. Sci Rep, 2017, 7(1): 7222. doi:10.1038/s41598-017-07833-1 [26] 陈蕊, 赵颖, 宋鸿儒, 等. 变应性鼻炎发病机制研究进展[J]. 河北北方学院学报(自然科学版), 2022, 38(2): 46-50. doi:10.3969/j.issn.1673-1492.2022.02.015 CHEN Rui, ZHAO Ying, SONG Hongru, et al. Research advances in pathogenesis of allergic rhinitis[J]. Journal of Hebei North University(Natural Science Edition), 2022, 38(2): 46-50. doi:10.3969/j.issn.1673-1492.2022.02.015 [27] 周杰, 陈曙光, 宋志强. 特异性免疫疗法治疗特应性皮炎[J]. 中华临床免疫和变态反应杂志, 2021, 15(1): 76-81. doi:10.3969/j.issn.1673-8705.2021.01.014 ZHOU Jie, CHEN Shuguang, SONG Zhiqiang. Allergen-specific immunotherapy in atopic dermatitis[J]. Chinese Journal of Allergy & Clinical Immunology, 2021, 15(1): 76-81. doi:10.3969/j.issn.1673-8705.2021.01.014 [28] Li H, Wen YH, Wu SL, et al. Epigenetic modification of enhancer of zeste homolog 2 modulates the activation of dendritic cells in allergen immunotherapy[J]. Int Arch Allergy Immunol, 2019, 180(2): 120-127. doi:10.1159/000500882 [29] Haruna T, Kariya S, Fujiwara T, et al. Role of whole saliva in the efficacy of sublingual immunotherapy in seasonal allergic rhinitis[J]. Allergol Int, 2019, 68(1): 82-89. doi:10.1016/j.alit.2018.07.008 [30] 陈玉迪, 胡艳, 隋海晶, 等. 抗IgE单克隆抗体在变态反应性疾病治疗中的应用[J]. 中华临床免疫和变态反应杂志, 2018, 12(3): 302-307. doi:10.3969/j.issn.1673-8705.2018.03.008 CHEN Yudi, HU Yan, SUI Haijing, et al. Use of anti-IgE monoclonal antibody in treatment of allergic diseases[J]. Chinese Journal of Allergy and Clinical Immunology, 2018, 12(3): 302-307. doi:10.3969/j.issn.1673-8705.2018.03.008 [31] Tai JH, Han MS, Kwak J, et al. Association between microbiota and nasal mucosal diseases in terms of immunity[J]. Int J Mol Sci, 2021, 22(9): 4744. doi:10.3390/ijms22094744 [32] Karatzas K, Katsifarakis N, Riga M, et al. New European Academy of Allergy and Clinical Immunology definition on pollen season mirrors symptom load for grass and birch pollen-induced allergic rhinitis[J]. Allergy, 2018, 73(9): 1851-1859. doi:10.1111/all.13487 [33] Zhou LB, Zheng YM, Liao WJ, et al. MUC1 deficiency promotes nasal epithelial barrier dysfunction in subjects with allergic rhinitis[J]. J Allergy Clin Immunol, 2019, 144(6): 1716-1719.e5. doi:10.1016/j.jaci.2019.07.042 [34] Celebi Sozener Z, Ozdel Ozturk B, Cerci P, et al. Epithelial barrier hypothesis: Effect of the external exposome on the microbiome and epithelial barriers in allergic disease[J]. Allergy, 2022, 77(5): 1418-1449. doi: 10.1111/all.15240 [35] Nakayama T, Hirahara K, Onodera A, et al. Th2 cells in health and disease[J]. Annu Rev Immunol, 2017, 35: 53-84. doi:10.1146/annurev-immunol-051116-052350 [36] Palomares ó, Sánchez-Ramón S, Dávila I, et al. dIvergEnt: how IgE axis contributes to the continuum of allergic asthma and anti-IgE therapies[J]. Int J Mol Sci, 2017, 18(6): 1328. doi:10.3390/ijms18061328 [37] Bousquet J, Anto JM, Bachert C, et al. Allergic rhinitis[J]. Nat Rev Dis Primers, 2020, 6(1): 95. doi:10.1038/s41572-020-00227-0 [38] Han XR, Krempski JW, Nadeau K. Advances and novel developments in mechanisms of allergic inflammation[J]. Allergy, 2020, 75(12): 3100-3111. doi:10.1111/all.14632 [39] 刘一潼, 周穗子, 邱前辉. NLRP3炎症小体在慢性鼻窦炎和变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 142-146. doi:10.6040/j.issn.1673-3770.0.2021.584 LIU Yitong, ZHOU Suizi, QIU Qianhui. Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 142-146. doi:10.6040/j.issn.1673-3770.0.2021.584 [40] Okubo K, Kurono Y, Ichimura K, et al. Japanese guidelines for allergic rhinitis 2017[J]. Allergol Int, 2017, 66(2): 205-219. doi:10.1016/j.alit.2016.11.001 [41] Renand A, Shamji MH, Harris KM, et al. Synchronous immune alterations mirror clinical response during allergen immunotherapy[J]. J Allergy Clin Immunol, 2018, 141(5): 1750-1760.e1. doi:10.1016/j.jaci.2017.09.041 [42] 宋小云, 张俊杰. 舌下免疫治疗对变应性鼻炎患者炎症因子及自噬的影响[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(3): 230-234. doi:10.13201/j.issn.2096-7993.2020.03.011 SONG Xiaoyun, ZHANG Junjie. Effect of sublingual immunotherapy on inflammatory factors and autophagy in patients with allergic rhinitis[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2020, 34(3): 230-234. doi:10.13201/j.issn.2096-7993.2020.03.011 [43] Nedjic J, Aichinger M, Emmerich J, et al. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance [J]. Nature, 2008, 455(7211): 396-400 [44] Germic N, Frangez Z, Yousefi S, et al. Regulation of the innate immune system by autophagy: monocytes, macrophages, dendritic cells and antigen presentation[J]. Cell Death Differ, 2019, 26(4): 715-727. doi:10.1038/s41418-019-0297-6 [45] Münz C. Canonical and non-canonical functions of the autophagy machinery in MHC restricted antigen presentation[J]. Front Immunol, 2022, 13: 868888. doi:10.3389/fimmu.2022.868888 [46] Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research[J]. Cell, 2010, 140(3): 313-326. doi:10.1016/j.cell.2010.01.028 [47] 李静, 李勇. 自噬在变应性鼻炎中的作用[J]. 中华临床免疫和变态反应杂志, 2018, 12(6): 637-640. doi:10.3969∕j.issn.1673-8705.2018.06.007 LI Jing, LI Yong. Role of autophagy in pathogenesis of allergic rhinitis[J]. Chinese Journal of Allergy and Clinical Immunology, 2018, 12(6): 637-640. doi:10.3969∕j.issn.1673-8705.2018.06.007 [48] Chen Y, Yang M, Deng J, et al. Elevated levels of activated and pathogenic eosinophils characterize moderate-severe house dust mite allergic rhinitis[J]. J Immunol Res, 2020, 2020: 8085615. doi:10.1155/2020/8085615 [49] 朱歆洁, 陆美萍, 陈若希, 等. 儿童变应性鼻炎严重度与血清嗜酸粒细胞阳离子蛋白的相关性[J]. 中华耳鼻咽喉头颈外科杂志, 2012, 47(8): 628-632. doi: 10.3760/cma.j.issn.1673-0860.2012.08.004 [50] Zhang Y, Wang X, Zhang H, et al. Autophagy modulators from Chinese herbal medicines: mechanisms and therapeutic potentials for asthma[J]. Front Pharmacol, 2021, 12: 710679. doi:10.3389/fphar.2021.710679 [51] Germic N, Frangez Z, Yousefi S, et al. Regulation of the innate immune system by autophagy: neutrophils, eosinophils, mast cells, NK cells[J]. Cell Death Differ, 2019, 26(4): 703-714. doi:10.1038/s41418-019-0295-8 [52] 余杰情, 罗庆, 熊园平, 等. 变应性鼻炎中自噬相关基因LC3与ECP的表达及意义[J]. 临床耳鼻咽喉头颈外科杂志, 2019, 33(4): 322-325. doi:10.13201/j.issn.1001-1781.2019.04.009 YU Jieqing, LUO Qing, XIONG Yuanping, et al. Expression of LC3 and ECP in allergic rhinitis and their significance[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2019, 33(4): 322-325. doi:10.13201/j.issn.1001-1781.2019.04.009 [53] Jiang XQ, Fang L, Wu HM, et al. TLR2 regulates allergic airway inflammation and autophagy through PI3K/Akt signaling pathway[J]. Inflammation, 2017, 40(4): 1382-1392. doi:10.1007/s10753-017-0581-x [54] Zhu XY, Wang XP, Wang Y, et al. Exosomal long non-coding RNA GAS5 suppresses Th1 differentiation and promotes Th2 differentiation via downregulating EZH2 and T-bet in allergic rhinitis[J]. Mol Immunol, 2020, 118: 30-39. doi:10.1016/j.molimm.2019.11.009 [55] Fan YQ, Yang CC, Zhou JY, et al. Regulatory effect of glutathione on treg/Th17 cell balance in allergic rhinitis patients through inhibiting intracellular autophagy[J]. Immunopharmacol Immunotoxicol, 2021, 43(1): 58-67. doi:10.1080/08923973.2020.1850762 [56] He YQ, Qiao YL, Xu S, et al. Allergen induces CD11c+ dendritic cell autophagy to aggravate allergic rhinitis through promoting immune imbalance[J]. Int Immunopharmacol, 2022, 106: 108611. doi:10.1016/j.intimp.2022.108611 [57] Nian JB, Zeng M, Zheng J, et al. Epithelial cells expressed IL-33 to promote degranulation of mast cells through inhibition on ST2/PI3K/mTOR-mediated autophagy in allergic rhinitis[J]. Cell Cycle, 2020, 19(10): 1132-1142. doi:10.1080/15384101.2020.1749402 [58] Li BB, Chen YL, Pang FZ. microRNA-30a targets ATG5 and attenuates airway fibrosis in asthma by suppressing autophagy[J]. Inflammation, 2020, 43(1): 44-53. doi:10.1007/s10753-019-01076-0 [59] Song YL, Wang ZG, Jiang JZ, et al. DEK-targeting aptamer DTA-64 attenuates bronchial EMT-mediated airway remodelling by suppressing TGF-β1/Smad, MAPK and PI3K signalling pathway in asthma[J]. J Cell Mol Med, 2020, 24(23): 13739-13750. doi:10.1111/jcmm.15942 [60] Yang ZC, Qu ZH, Yi MJ, et al. miR-448-5p inhibits TGF-β1-induced epithelial-mesenchymal transition and pulmonary fibrosis by targeting Six1 in asthma[J]. J Cell Physiol, 2019, 234(6): 8804-8814. doi:10.1002/jcp.27540 [61] Lou LL, Tian MY, Chang JX, et al. MiRNA-192-5p attenuates airway remodeling and autophagy in asthma by targeting MMP-16 and ATG7[J]. Biomedecine Pharmacother, 2020, 122: 109692. doi:10.1016/j.biopha.2019.109692 [62] Li J, Li Y. Autophagy is involved in allergic rhinitis by inducing airway remodeling[J]. Int Forum Allergy Rhinol, 2019, 9(11): 1346-1351. doi:10.1002/alr.22424 |
[1] | 孙汐文,骆春雨,李志鹏,张维天. 铁死亡在呼吸道炎症性疾病中的作用及研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 24-32. |
[2] | 朱雅欣,刘峰,关建,殷善开. 儿童扁桃体腺样体肥大组织淋巴细胞改变的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 62-67. |
[3] | 卢淦,邓玉琴,陶泽璋. 过敏性疾病与糖尿病的相关性及潜在关联机制[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 215-222. |
[4] | 侯凌霄,展长翠,许安廷,范新泰,王娜. 鼻黏膜组织CD4+ T细胞参与季节性变应性鼻炎发病机制的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 96-104. |
[5] | 崔宁,王云梦,杨景朴. 2型固有淋巴细胞在慢性鼻窦炎中的作用及调节机制研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 153-159. |
[6] | 袁玥,付圣尧,姜彦,陈敏. 细胞焦亡在慢性气道炎症性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 166-171. |
[7] | 翟睿,李园,于敬龙,陈溪,郑酉友,刘兆兰,王俊宏. 揿针治疗变应性鼻炎临床疗效的Meta分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 35-45. |
[8] | 索安奇,杨欣欣. 线粒体自噬与头颈部鳞状细胞癌关系的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 111-117. |
[9] | 苏杰,杨馥宇,李猛,陈荟茹,蒋利生,王丽香. GLP-1诱导的自噬对糖尿病大鼠视网膜病变的保护作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 30-34. |
[10] | 倪璟滋,万文锦,程雷. 变应性鼻炎健康相关生活质量研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 110-115. |
[11] | 林一杭,李幼瑾. 肠道微生态在儿童变应性鼻炎中的研究现状[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 116-122. |
[12] | 刘真,宋西成. 细胞焦亡在变应性鼻炎中的作用机制及研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 123-129. |
[13] | 王娜,柴向斌. 前列腺源性ETS因子在哮喘及鼻黏膜炎性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 136-141. |
[14] | 刘一潼,周穗子,邱前辉. NLRP3炎症小体在慢性鼻窦炎和变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 142-146. |
[15] | 龚霄阳,程雷. 新冠疫情期间基于门诊患者的变应性鼻炎患者比例构成分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 245-255. |
|