山东大学耳鼻喉眼学报 ›› 2020, Vol. 34 ›› Issue (3): 26-31.doi: 10.6040/j.issn.1673-3770.1.2020.029

• 专家笔谈 • 上一篇    下一篇

甲状腺未分化癌的分子机制研究

青晓艳1,徐义全2综述李超3审校   

  1. 1. 成都市第七人民医院 肿瘤科, 四川 成都 610041;
    2. 四川省肿瘤医院·研究所/四川省癌症防治中心/电子科技大学医学院附属肿瘤医院 麻醉医学中心, 四川 成都 610041;
    3. 四川省肿瘤医院·研究所/四川省癌症防治中心/电子科技大学医学院附属肿瘤医院 头颈外科中心, 四川 成都 610041
  • 出版日期:2020-05-20 发布日期:2020-06-29
  • 通讯作者: 李超. E-mail:sclichao@qq.com
  • 基金资助:
    四川省卫生和计划生育委员会课题(150238);四川省卫生计生委适宜技术推广项目(18SYJS07)

Advances in molecular mechanisms of anaplastic thyroid cancer

QING Xiaoyan1,XU Yiquan2Overview,LI Chao3Guidance   

  1. 1. Department of Oncology, Chengdu Seventh People's Hospital, Chengdu 610041, Sichuan, China;
    2. Department of Anesthesiology Medical Center, Sichuan Cancer Hospital & Institute, the Affiliated Cancer Hospital School of Medicine, University of Electronic Science and Technology, Chengdu 610041, Sichuan, China;
    3. Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, the Affiliated Cancer Hospital School of Medicine, University of Electronic Science and Technology, Chengdu 610041, Sichuan, China
  • Online:2020-05-20 Published:2020-06-29

摘要: 甲状腺未分化癌(ATC)是一种罕见的侵袭型甲状腺恶性肿瘤,进展迅速、预后差,目前缺乏疗效显著的治疗方法和早期诊断方案。有学者研究显示,ATC预后不良是由于肿瘤早期突变以及肿瘤侵袭性生长,因此针对ATC发病机制的驱动突变及靶向药物的研究成为新方向。在ATC中涉及与肿瘤进展相关的不同分子途径,并且有学者探讨实施作用于这些分子途径的新疗法,以改善患者生活质量。对ATC分子结构特征的研究成果,为新的靶向治疗带来希望,新的分子机制将有助于发现更多潜在的治疗靶点,综述近年来ATC的分子机制研究概况。

关键词: 甲状腺未分化癌, 侵袭型恶性肿瘤, 分子机制, 基因, 靶向治疗

Abstract: Anaplastic thyroid cancer(ATC)is a rare invasive thyroid tumor associated with rapid progression and poor prognosis. Currently, there is no effective treatment or early diagnosis. Some scholars have shown that the poor prognosis of ATC is due to the early mutation and invasive growth of the tumor; consequently, new directions in research involve the driving mutation of the pathogenesis of ATC and targeted drug therapies. Different molecular pathways related to tumor progression are involved in ATC. Some scholars have explored the implementation of new therapies that act on these molecular pathways to improve patients' quality of life. The research results on the molecular structural characteristics of ATC bring hope for new targeted therapies. The new molecular mechanisms will help us discover more potential therapeutic targets. We have reviewed the recent research on the molecular mechanisms of ATC.

Key words: Anaplastic thyroid carcinoma, Invasive malignancy, Molecular mechanism, Genes, Targeted therapy

中图分类号: 

  • R739.91
[1] 宋晓宇, 宋西成. 缺氧诱导因子-1α在甲状腺癌中的调节机制[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 136-138, 148. doi:10.6040/j.issn.1673-3770.0.2018.317. SONG Xiaoyu, SONG Xicheng. Research progress on the regulation of HIF-1α expression in thyroid carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 136-138, 148. doi:10.6040/j.issn.1673-3770.0.2018.317.
[2] 中华人民共和国国家卫生健康委员会. 甲状腺癌诊疗规范(2018年版)[J]. 中华普通外科学文献(电子版), 2019, 13(1): 1-15. doi:10.3877/cma.j.issn.1674-0793.2019.01.001.
[3] Zheng JX, Cheng X, Xu SC, et al. Diallyl trisulfide induces G2/M cell-cycle arrest and apoptosis in anaplastic thyroid carcinoma 8505C cells[J]. Food Funct, 2019, 10(11): 7253-7261. doi:10.1039/c9fo00646j.
[4] Araque KA, Gubbi S, Klubo-Gwiezdzinska J. Updates on the management of thyroid cancer[J]. Horm EtMetab, 2020,10. doi:10.1055/a-1089-7870.
[5] Hugen N, Sloot YJE, Netea-Maier RT, et al. Divergent metastatic patterns between subtypes of thyroid carcinoma results from the nationwide Dutch pathology registry[J]. J Clin Endocrinol Metab, 2020, 105(3): dgz078. doi:10.1210/clinem/dgz078.
[6] Jiao C, Li L, Zhang P, et al. REGγ ablation impedes dedifferentiation of anaplastic thyroid carcinoma and accentuates radio-therapeutic response by regulating the Smad7-TGF-β pathway[J]. Cell Death Differ, 2020, 27(2): 497-508. doi:10.1038/s41418-019-0367-9.
[7] Ma YH, Cang SD, Li GQ, et al. Integrated analysis of transcriptome data revealed MMP3 and MMP13 as critical genes in anaplastic thyroid cancer progression[J]. J Cell Physiol, 2019, 234(12): 22260-22271. doi:10.1002/jcp.28793.
[8] Kohler H, Latteyer S, HönesGS, et al. Increased anaplastic lymphoma kinase activity induces a poorly differentiated thyroid carcinoma in mice[J]. Thyroid, 2019, 29(10): 1438-1446. doi:10.1089/thy.2018.0526.
[9] Wang Q, Sui GQ, Wu XL, et al. A sequential targeting nanoplatform for anaplastic thyroid carcinoma theranostics[J]. Acta Biomater, 2020, 102: 367-383. doi:10.1016/j.actbio.2019.11.043.
[10] Weber F, Junger H, Werner JM, et al. Increased cytoplasmatic expression of cancer immune surveillance receptor CD1d in anaplastic thyroid carcinomas[J]. Cancer Med, 2019, 8(16): 7065-7073. doi:10.1002/cam4.2573.
[11] Schürch CM, Roelli MA, Forster S, et al. Targeting CD47 in anaplastic thyroid carcinoma enhances tumor phagocytosis by macrophages and is a promising therapeutic strategy[J]. Thyroid, 2019, 29(7): 979-992. doi:10.1089/thy.2018.0555.
[12] Ferrari SM, Elia G, Ragusa F, et al. Novel treatments for anaplastic thyroid carcinoma[J]. Gland Surg, 2020, 9(Suppl 1): S28-S42. doi:10.21037/gs.2019.10.18.
[13] Hao Z, Wang P. Lenvatinib in Management of Solid Tumors[J]. Oncologist,2020,25(2):e302-e310. doi: 10.1634/theoncologist.2019-0407.
[14] Stenman A, Hellgren LS, Jatta K, et al. Metastatic anaplastic thyroid carcinoma in complete remission: morphological, molecular, and clinical work-up of a rare case[J]. Endocr Pathol, 2020, 31(1): 77-83. doi:10.1007/s12022-020-09606-5.
[15] Paulsson JO, Backman S, Wang N, et al. Whole-genome sequencing of synchronous thyroid carcinomas identifies aberrant DNA repair in thyroid cancer dedifferentiation[J]. J Pathol, 2020, 250(2): 183-194. doi:10.1002/path.5359.
[16] Calabrese G, Dolcimascolo A, Caruso G, et al. MiR-19a is involved in progression and malignancy of anaplastic thyroid cancer cells[J]. Onco Targets Ther, 2019, 12: 9571-9583. doi:10.2147/OTT.S221733.
[17] Pellecchia S, Sepe R, Decaussin-Petrucci M, et al. The long non-coding RNA Prader willi/angelman region RNA5(PAR5)is downregulated in anaplastic thyroid carcinomas where it Acts as a tumor suppressor by reducing EZH2 activity[J]. Cancers(Basel), 2020, 12(1): E235. doi:10.3390/cancers12010235.
[18] Credendino SC, Bellone ML, Lewin N, et al. A Cernacircuitry involving the long noncoding RNA Klhl14-AS, Pax8, and Bcl2 drives thyroid carcinogenesis[J]. Cancer Res, 2019, 79(22): 5746-5757. doi:10.1158/0008-5472.CAN-19-0039.
[19] Wächter S, Vorländer C, Schabram J, et al. Anaplastic thyroid carcinoma: changing trends of treatment strategies and associated overall survival[J]. Eur Arch Otorhinolaryngol, 2020, 277(5): 1507-1514. doi:10.1007/s00405-020-05853-8.
[20] Nikitski AV, Rominski SL, Condello V, et al. Mouse model of thyroid cancer progression and dedifferentiation driven by STRN-ALK expression and loss of p53: evidence for the existence of two types of poorly differentiated carcinoma[J]. Thyroid, 2019, 29(10): 1425-1437. doi:10.1089/thy.2019.0284.
[21] Lin B, Ma HQ, Ma MG, et al. The incidence and survival analysis for anaplastic thyroid cancer: a SEER database analysis[J]. Am J Transl Res, 2019, 11(9): 5888-5896.
[22] Yan P, Su ZJ, Zhang ZH, et al. LncRNA NEAT1 enhances the resistance of anaplastic thyroid carcinoma cells to cisplatin by sponging miR?9?5p and regulating SPAG9 expression[J]. Int J Oncol, 2019, 55(5): 988-1002. doi:10.3892/ijo.2019.4868.
[23] Revilla G, Pons MP, Baila-Rueda L, et al. Cholesterol and 27-hydroxycholesterol promote thyroid carcinoma aggressiveness[J]. Sci Rep, 2019, 9(1): 10260. doi:10.1038/s41598-019-46727-2.
[24] Zhong ZM, Chen X, Qi X, et al. Adaptor protein LNK promotes anaplastic thyroid carcinoma cell growth via 14-3-3 ε/γ binding[J]. Cancer Cell Int, 2020, 20: 11. doi:10.1186/s12935-019-1090-9.
[25] Pereira M, Williams VL, Hallanger Johnson J, et al. Thyroid cancer incidence trends in the United States: association with changes in professional guideline recommendations[J]. Thyroid, 2020,3. doi:10.1089/thy.2019.0415.
[26] Minna E, Brich S, Todoerti K, et al. Cancer associated fibroblasts and senescent thyroid cells in the invasive front of thyroid carcinoma[J]. Cancers(Basel), 2020, 12(1): E112. doi:10.3390/cancers12010112.
[27] Haddad RI, Nasr C, Bischoff L, et al. NCCN guidelines insights: thyroid carcinoma, version 2.2018[J]. J Natl Compr Canc Netw, 2018, 16(12): 1429-1440. doi:10.6004/jnccn.2018.0089.
[28] Saini S, Tulla K, Maker AV, et al. Therapeutic advances in anaplastic thyroid cancer: a current perspective[J]. Mol Cancer, 2018, 17(1): 154. doi:10.1186/s12943-018-0903-0.
[29] Mirian C, Grnhj C, Jensen DH, et al. Trends in thyroid cancer: Retrospective analysis of incidence and survival in Denmark 1980-2014[J]. Cancer Epidemiol, 2018, 55: 81-87. doi:10.1016/j.canep.2018.05.009.
[30] Gunda V, Gigliotti B, Ndishabandi D, et al. Combinations of BRAF inhibitor and anti-PD-1/PD-L1 antibody improve survival and tumour immunity in an immunocompetent model of orthotopic murine anaplastic thyroid cancer[J]. Br J Cancer, 2018, 119(10): 1223-1232. doi:10.1038/s41416-018-0296-2.
[31] Ljubas J, Ovesen T, Rusan M. A systematic review of phase II targeted therapy clinical trials in anaplastic thyroid cancer[J]. Cancers(Basel), 2019, 11(7): E943. doi:10.3390/cancers11070943.
[1] 潘新良. 加强甲状腺结节及恶性肿瘤的规范治疗[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 1-12.
[2] 徐丽娜,高艳慧,何双八. 南京地区耳聋患者常见耳聋基因突变的分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(6): 45-48.
[3] 申宇鹏,宋琦,李晓明. 喉癌前病变的病因、分子机制和处理策略[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 25-30.
[4] 潘晓菲,王军,肖洋,马丽晶. LncRNA CTB-147C22.8对复发性呼吸道乳头状瘤细胞侵袭的影响[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 66-70.
[5] 钱方舟,黄啸博,魏钦俊,陈智斌. 致聋基因 EYA4 在斑马鱼胚胎发育中的时空表达特征分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 49-55.
[6] 田慧琴,吴中飞,陆莹,程雷. GCCYP27B1基因多态性与汉族人群尘螨致敏的持续性变应性鼻炎的关联研究[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 71-78.
[7] 陆美萍,程雷. 变应性鼻炎的遗传学研究现状[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 36-41.
[8] 陆海军,刘霁,丁晓. 鼻咽癌的综合治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 26-30.
[9] 刘冬梅,李洋,宋继科,郭大东,马先祯,毕宏生. 玻璃体切割联合硅油填充术后晶状体基因表达谱的变化及验证[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 95-98.
[10] 吴静,刘业海. 头颈部鳞状细胞癌的靶向治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 97-102.
[11] 孙滨,郭伯敏,康杰,邓先兆,伍波,樊友本. 甲状腺未分化癌的规范化治疗[J]. 山东大学耳鼻喉眼学报, 2017, 31(6): 16-20.
[12] 徐新博,马小洁,闫涛,含笑,张寒冰. 新型PAX3基因突变导致Waardenburg I型综合征[J]. 山东大学耳鼻喉眼学报, 2017, 31(6): 39-41.
[13] 赵栋栋, 王艺, 高建鲁. 原发性开角型青光眼易感基因研究进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(6): 92-96.
[14] 孙菲菲,胡松群,唐艳,张洁,吴笛,邱金红,王志霞,张鲁平. 高通量基因捕获测序技术在12个耳聋家庭中的应用[J]. 山东大学耳鼻喉眼学报, 2017, 31(5): 45-49.
[15] 张明德,张祖平,于学民,魏燕红,袁英. RASSF2A基因甲基化在喉癌组织中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 64-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林彬,王挥戈 . 功能性内镜鼻窦手术后鼻黏膜纤毛转归的研究[J]. 山东大学耳鼻喉眼学报, 2006, 20(6): 481 -487 .
[2] 张晗,黄一飞 . 抗角膜移植排斥的研究进展[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 84 -87 .
[3] 邓基波,孙奉乾,许安廷 . 大前庭导水管综合征[J]. 山东大学耳鼻喉眼学报, 2006, 20(2): 116 -118 .
[4] 周子宁,金国威 . 喉气管狭窄的预防和治疗进展[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 462 -465 .
[5] 公 蕾,孙 洁,薛子超,李敬华,薛卫国 . 鼻腔鼻窦恶性肿瘤细胞周期的DNA分析[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 193 -195 .
[6] 陈文文 . 1例T/NK淋巴瘤17年演进[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 472 -472 .
[7] 周斌,李滨 . 鼻内窥镜下鼻窦鼻息肉手术75例疗效观察[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 24 -26 .
[8] 杨长亮,黄治物,姚行齐,诸勇,孙艺 . 正常气骨导听性脑干反应及其应用[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 9 -13 .
[9] 曹忠良 . 颌面复合伤155例临床分析[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 89 -89 .
[10] 栾建刚,梁传余,文艳君,李炯 . 抑制表皮生长因子受体基因表达的pSIREN-ShuttleRNAi表达载体的构建[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 4 -8 .