Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2020, Vol. 34 ›› Issue (1): 99-104.doi: 10.6040/j.issn.1673-3770.0.2019.370

Previous Articles    

Recent advances regarding extracellular vesicles in head and neck cancers

BIAN Xiaomin1, HAN Guanghong2Review,YU Dan1Guidance   

  1. 1. Department of Otolaryngology and Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin, China;
    2. Department of Geriatric Stomatology, Stomatological Hospital of Jilin University, Changchun 130021, Jilin, China
  • Published:2020-03-06

Abstract: Proliferation and metastasis of tumors are mediated by “mutual dialogue” between cells in the tumor microenvironment(TME). Extracellular vesicles(EVs), vesicle-like bodies secreted by cells, are involved in intercellular communication and are secreted from almost all cell types. They are the key signal mediators between cancer cells and the TME. They play an important role in transporting molecules between cells in the TME. Tumor cell-derived EVs participate in the proliferation and migration of cancer cells through the activation of various signaling pathways in target cells in the TME. The molecular mechanisms and clinical applications of EVs in head and neck cancers are still largely unknown and need further study. In this review, we discuss the TME of head and neck cancers with emphasis on EV-mediated mechanisms in tumor proliferation, invasion, metastasis, angiogenesis, and drug resistance.

Key words: Extracellular vesicles, Exosomes, Head and neck cancers

CLC Number: 

  • R767.04
[1] 吴静, 刘业海. 头颈部鳞状细胞癌的靶向治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 97-102. doi:10.6040/j.issn.1673-3770.0. 2018.058. WU Jing, LIU Yehai. Targeted therapy for head and neck squamous cell carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(5): 97-102. doi:10.6040/j.issn.1673-3770.0. 2018.058.
[2] Jabalee J, Towle R, Garnis C. The role of extracellular vesicles in cancer: cargo, function, and therapeutic implications[J]. Cells, 2018, 7(8): 93. doi:10.3390/cells7080093.
[3] Gu XY, Erb U, Büchler MW, et al. Improved vaccine efficacy of tumor exosome compared to tumor lysate loaded dendritic cells in mice[J]. Int J Cancer, 2015, 136(4): E74-E84. doi:10.1002/ijc. 29100.
[4] Ludwig S, Sharma P, Theodoraki MN, et al. Molecular and functional profiles of exosomes from HPV(+)and HPV(-)head and neck cancer cell lines[J]. Front Oncol, 2018, 8: 445. doi:10.3389/fonc. 2018.00445.
[5] Theodoraki MN, Yerneni SS, Hoffmann TK, et al. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients[J]. Clin Cancer Res, 2018, 24(4): 896-905. doi:10.1158/1078-0432. CCR-17-2664.
[6] Theodoraki MN, Hoffmann TK, Jackson EK, et al. Exosomes in HNSCC plasma as surrogate markers of tumour progression and immune competence[J]. Clin Exp Immunol, 2018, 194(1): 67-78. doi:10.1111/cei. 13157.
[7] Maybruck BT, Pfannenstiel LW, Diaz-Montero M, et al. Tumor-derived exosomes induce CD8+ T cell suppressors[J]. J Immunother Cancer, 2017, 5(1): 65. doi:10.1186/s40425-017-0269-7.
[8] Xie CQ, Ji N, Tang ZG, et al. The role of extracellular vesicles from different origin in the microenvironment of head and neck cancers[J]. Mol Cancer, 2019, 18(1): 83. doi:10.1186/s12943-019-0985-3.
[9] Huang Q, Yang JC, Zheng J, et al. Characterization of selective exosomal microRNA expression profile derived from laryngeal squamous cell carcinoma detected by next generation sequencing[J]. Oncol Rep, 2018, 40(5): 2584-2594. doi:10.3892/or. 2018.6672.
[10] Wang XN, Qin X, Yan M, et al. Loss of exosomal miR-3188 in cancer-associated fibroblasts contributes to HNC progression[J]. J Exp Clin Cancer Res, 2019, 38(1): 151. doi:10.1186/s13046-019-1144-9.
[11] Cheng SY, Li Z, He JJ, et al. Epstein-Barr virus noncoding RNAs from the extracellular vesicles of nasopharyngeal carcinoma(NPC)cells promote angiogenesis via TLR3/RIG-I-mediated VCAM-1 expression[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(6): 1201-1213. doi:10.1016/j.bbadis. 2019.01.015.
[12] Bao LL, You B, Shi S, et al. Metastasis-associated miR-23a from nasopharyngeal carcinoma-derived exosomes mediates angiogenesis by repressing a novel target gene TSGA10[J]. Oncogene, 2018, 37(21): 2873-2889. doi:10.1038/s41388-018-0183-6.
[13] Shan Y, You B, Shi S, et al. Hypoxia-induced matrix metalloproteinase-13 expression in exosomes from nasopharyngeal carcinoma enhances metastases[J]. Cell Death Dis, 2018, 9(3): 382. doi:10.1038/s41419-018-0425-0.
[14] 王爽, 孔祥玉, 杜利清. 外泌体与肿瘤化疗耐药的研究进展[J]. 肿瘤, 2017, 37(2): 184-187. doi:10.3781/j.issn.1000-7431. 2017.55.719. WANG Shuang, KONG Xiangyu, DU Liqing. Progress in research on exosomes in tumor chemotherapy resistance[J]. Tumor, 2017, 37(2): 184-187. doi:10.3781/j.issn.1000-7431. 2017.55.719.
[15] 张如月, 周玉冰, 杨哲, 等. 外泌体介导的肿瘤化疗耐药研究进展[J]. 药学学报, 2019, 54(4): 594-600. doi:10.16438/j.0513-4870. 2018-1025. ZHANG Ruyue, ZHOU Yubing, YANG Zhe, et al. Advances in understanding exosomes-mediated tumor chemoresistance[J]. Acta Pharmaceutica Sinica, 2019, 54(4): 594-600. doi:10.16438/j.0513-4870. 2018-1025.
[16] Steinbichler TB, Dudás J, Skvortsov S, et al. Therapy resistance mediated by exosomes[J]. Mol Cancer, 2019, 18(1): 58. doi:10.1186/s12943-019-0970-x.
[17] 陈曦, 乔明哲. 免疫检查点抑制剂在复发或转移性头颈鳞癌的治疗进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 42-48.doi:10.6040/j.issn.1673-3770. 1. 2019.001. CHEN Xi, QIAO Mingzhe. Progress of immune checkpoint inhibitors in the treatment of recurrent or metastatic head and neck squamous cell carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 42-48. doi:10.6040/j.issn.1673-3770.1. 2019.001.
[18] Qin X, Guo HY, Wang XN, et al. Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5[J]. Genome Biol, 2019, 20(1): 12. doi:10.1186/s13059-018-1604-0.
[19] Liu T, Chen G, Sun DW, et al. Exosomes containing miR-21 transfer the characteristic of cisplatin resistance by targeting PTEN and PDCD4 in oral squamous cell carcinoma[J]. Acta Biochim Biophys Sin(Shanghai), 2017, 49(9): 808-816. doi:10.1093/abbs/gmx078.
[20] 严羽, 朱江. 早期喉癌及喉癌前病变诊断的研究进展[J]. 山东大学耳鼻喉眼学报, 2015, 29(4): 80-85. doi:10.6040/j. issn.1673-770.0. 2015.007. YAN Yu, ZHU Jiang. Advances in the diagnosis of early laryngeal carcinoma and precancerous laryngeal lesions[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2015, 29(4): 80-85. doi:10.6040/j. issn.1673-770.0. 2015.007.
[21] Jiang N, Pan JC, Fang S, et al. Liquid biopsy: Circulating exosomal long noncoding RNAs in cancer[J]. Clin Chim Acta, 2019, 495: 331-337. doi:10.1016/j.cca. 2019.04.082.
[22] Wang JT, Zhou YD, Lu JG, et al. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma[J]. Med Oncol, 2014, 31(9): 148. doi:10.1007/s12032-014-0148-8.
[23] Ding H, Cai YJ, Gao LZ, et al. Exosome-like nanozyme vesicles for H2O2-responsive catalytic photoacoustic imaging of xenograft nasopharyngeal carcinoma[J]. Nano Lett, 2019, 19(1): 203-209. doi:10.1021/acs.nanolett. 8b03709.
[24] Nair S, Tang KD, Kenny L, et al. Salivary exosomes as potential biomarkers in cancer[J]. Oral Oncol, 2018, 84: 31-40. doi:10.1016/j.oraloncology. 2018.07.001.
[25] Langevin S, Kuhnell D, Parry T, et al. Comprehensive microRNA-sequencing of exosomes derived from head and neck carcinoma cells in vitro reveals common secretion profiles and potential utility as salivary biomarkers[J]. Oncotarget, 2017, 8(47): 82459-82474. doi:10.18632/oncotarget. 19614.
[26] Kannan A, Hertweck KL, Philley JV, et al. Genetic mutation and exosome signature of human papilloma virus associated oropharyngeal cancer[J]. Sci Rep, 2017, 7: 46102. doi:10.1038/srep46102.
[27] Chen XH, Fu EH, Lou HH, et al. IL-6 induced M1 type macrophage polarization increases radiosensitivity in HPV positive head and neck cancer[J]. Cancer Lett, 2019, 456: 69-79. doi:10.1016/j.canlet. 2019.04.032.
[28] Peacock B, Rigby A, Bradford J, et al. Extracellular vesicle microRNA cargo is correlated with HPV status in oropharyngeal carcinoma[J]. J Oral Pathol Med, 2018, 47(10): 954-963. doi:10.1111/jop. 12781.
[29] Tomasetti M, Re M, Monaco F, et al. MiR-126 in intestinal-type sinonasal adenocarcinomas: exosomal transfer of MiR-126 promotes anti-tumour responses[J]. BMC Cancer, 2018, 18(1): 896. doi:10.1186/s12885-018-4801-z.
[30] Ren K. Exosomes in perspective: a potential surrogate for stem cell therapy[J]. Odontology, 2019, 107(3): 271-284. doi:10.1007/s10266-018-0395-9.
[31] Li L, Lu S, Liang XH, et al. ΓδTDEs: an efficient delivery system for miR-138 with anti-tumoral and immunostimulatory roles on oral squamous cell carcinoma[J]. Mol Ther Nucleic Acids, 2019, 14: 101-113. doi:10.1016/j.omtn. 2018.11.009.
[32] Lu J, Liu QH, Wang F, et al. Exosomal miR-9 inhibits angiogenesis by targeting MDK and regulating PDK/AKT pathway in nasopharyngeal carcinoma[J]. J Exp Clin Cancer Res, 2018, 37(1): 147. doi:10.1186/s13046-018-0814-3.
[33] Di Bonito P, Accardi L, Galati L, et al. Anti-cancer vaccine for HPV-associated neoplasms: focus on a therapeutic HPV vaccine based on a novel tumor antigen delivery method using endogenously engineered exosomes[J]. Cancers(Basel), 2019, 11(2): E138. doi:10.3390/cancers11020138.
[34] 罗轶, 阚丹, 周琦, 等. 外泌体miRNAs在鼻咽癌放射抵抗中的作用[J]. 中国耳鼻咽喉头颈外科, 2019, 26(5): 239-243. doi:10.16066/j.1672-7002. 2019.05.002. LUO Yi, KAN Dan, ZHOU QI, et al. Role of miRNAs from exosomes in the radioresistance of nasopharyngeal carcinoma[J]. Chinese Archives of Otolaryngology-Head and Neck Surgery, 2019, 26(5): 239-243. doi:10.16066/j.1672-7002. 2019.05.002.
[35] Kobayashi E, Aga M, Kondo S, et al. C-terminal farnesylation of UCH-L1 plays a role in transport of Epstein-Barr virus primary oncoprotein LMP1 to exosomes[J]. mSphere, 2018, 3(1): e00030-18. doi:10.1128/msphere. 00030-18.
[36] Zhou YJ, Xia LZ, Lin JG, et al. Exosomes in Nasopharyngeal Carcinoma[J]. J Cancer, 2018, 9(5): 767-777. doi:10.7150/jca. 22505.
[37] Wang CH, Chen L, Huang YY, et al. Exosome-delivered TRPP2 siRNA inhibits the epithelial-mesenchymal transition of FaDu cells[J]. Oncol Lett, 2019, 17(2): 1953-1961. doi:10.3892/ol. 2018.9752.
[1] ZHOU Juan, ZHENG Jiafa. Research progress of miRNA in head and neck cancers [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(5): 79-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!