Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2021, Vol. 35 ›› Issue (2): 131-135.doi: 10.6040/j.issn.1673-3770.0.2020.206

Previous Articles     Next Articles

Research progress of exosomes in thyroid cancers

ZHANG Yiyi1Overview,XUE Gang2, JIN Chunting3Guidance   

  1. 1. Basic Medical College, Hebei North University, Zhangjiakou 075000, Hebei, China;
    2. Department of Otorhinolaryngology & Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075061, Hebei, China;
    3. Department of Pathology, Hebei North University, Zhangjiakou 075000, Hebei, China
  • Published:2021-04-20

Abstract: The exosome are extracellular vesicle with a diameter of 50-140 nm, generated by almost all types of cell and carrying nucleic acids, proteins, lipids, and metabolites. They are found in all biological fluids such as blood,milk,urine etc.and play a key role in intercellular communication by delivering active biomolecules. This paper rviews the general situation, functions and applications of exosomes, summarize the effects of exosomal miRNAs and circRNAs in thyroid carcinoma and the potential as a new type of biomarkers.

Key words: Thyroid cancers, Exosome, Extracellular vesicles, MicroRNAs(miRNA), Biomarkers

CLC Number: 

  • R736.1
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424. doi:10.3322/caac.21492.
[2] Cabanillas ME, McFadden DG, Durante C. Thyroid cancer[J]. Lancet, 2016, 388(10061):2783-2795. doi:10.1016/s0140-6736(16)30172-6.
[3] Kitahara CM, Sosa JA. The changing incidence of thyroid cancer[J]. Nat Rev Endocrinol, 2016, 12(11):646-653. doi:10.1038/nrendo.2016.110.
[4] Li N, Du XL, Reitzel LR, et al. Impact of enhanced detection on the increase in thyroid cancer incidence in the United States: review of incidence trends by socioeconomic status within the surveillance, epidemiology, and end results registry, 1980-2008[J]. Thyroid, 2013, 23(1):103-110. doi:10.1089/thy.2012.0392.
[5] 邱杰, 孙彦. 肿瘤标志物检测在甲状腺癌临床诊治中的意义[J]. 山东大学耳鼻喉眼学报, 2016, 30(2):28-31. doi:10.6040/j.issn.1673-3770.1.2016.08. QIU Jie, SUN Yan. Role of tumor marker in the diagnosis and treatment of thyroid carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2016, 30(2):28-31. doi:10.6040/j.issn.1673-3770.1.2016.08.
[6] Trimboli P, Seregni E, Treglia G, et al. Procalcitonin for detecting medullary thyroid carcinoma: a systematic review[J]. Endocr Relat Cancer, 2015, 22(3):R157-R164. doi:10.1530/erc-15-0156.
[7] Rajagopal C, Harikumar KB. The origin and functions of exosomes in cancer[J]. Front Oncol, 2018, 8:66. doi:10.3389/fonc.2018.00066.
[8] Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles[J]. Trends Cell Biol, 2017, 27(3):172-188. doi:10.1016/j.tcb.2016.11.003.
[9] Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release[J]. Cell Mol Life Sci, 2018, 75(2):193-208. doi:10.1007/s00018-017-2595-9.
[10] Kalluri R. The biology and function of exosomes in cancer[J]. J Clin Invest, 2016, 126(4):1208-1215. doi:10.1172/jci81135.
[11] Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation[J]. Nat Cell Biol, 2018, 20(3):332-343. doi:10.1038/s41556-018-0040-4.
[12] Wen SW, Lima LG, Lobb RJ, et al. Breast cancer-derived exosomes reflect the cell-of-origin phenotype[J]. Proteomics, 2019, 19(8):e1800180. doi:10.1002/pmic.201800180.
[13] Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478)DOI:10.1126/science.aau6977. doi:10.1126/science.aau6977.
[14] Zhao L, Yu J, Wang J, et al. Isolation and Identification of miRNAs in exosomes derived from serum of colon cancer patients[J]. J Cancer, 2017, 8(7):1145-1152. doi:10.7150/jca.18026.
[15] 叶枫, 董惠芬, 刘镕. 外泌体分离方法的研究进展[J]. 中国病原生物学杂志, 2019, 14(1):118-122. doi:10.13350/j.cjpb.190126. YE Feng, DONG Huifen, LIU Rong. Comparison of methods of isolating exosomes[J]. Journal of Pathogen Biology, 2019, 14(1):118-122. doi:10.13350/j.cjpb.190126.
[16] Welton JL, Khanna S, Giles PJ, et al. Proteomics analysis of bladder cancer exosomes[J]. Mol Cell Proteomics, 2010, 9(6):1324-1338. doi:10.1074/mcp.m000063-mcp201.
[17] Koritzinsky EH, Street JM, Star RA, et al. Quantification of exosomes[J]. J Cell Physiol, 2017, 232(7):1587-1590. doi:10.1002/jcp.25387.
[18] Stoltenburg R, Reinemann C, Strehlitz B. SELEX: a(r)evolutionary method to generate high-affinity nucleic acid ligands[J]. Biomol Eng, 2007, 24(4):381-403. doi:10.1016/j.bioeng.2007.06.001.
[19] 吴金恩, 丁军涛. 外泌体生物学功能及应用研究进展[J]. 动物医学进展, 2016, 37(12):90-94. doi:10.16437/j.cnki.1007-5038.2016.12.018. WU Jin'en, DING Juntao. Progress on biological function and application of exosomes[J]. Progress in Veterinary Medicine, 2016, 37(12):90-94. doi:10.16437/j.cnki.1007-5038.2016.12.018.
[20] Liu Y, Luo F, Wang B, et al. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells[J]. Cancer Lett, 2016, 370(1):125-135. doi:10.1016/j.canlet.2015.10.011.
[21] Clark DJ, Fondrie WE, Yang A, et al. Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes[J]. J Proteomics, 2016, 133:161-169. doi:10.1016/j.jprot.2015.12.023.
[22] Yang WW, Yang LQ, Zhao F, et al. Epiregulin promotes lung metastasis of salivary adenoid cystic carcinoma[J]. Theranostics, 2017, 7(15):3700-3714. doi:10.7150/thno.19712.
[23] 周昌娈, 谭磊, 丁铲. RNA病毒利用外泌体促进病毒感染的研究进展[J]. 微生物学通报, 2017, 44(12):2988-2996. doi:10.13344/j.microbiol.china.170390. ZHOU Changluan, TAN Lei, DING Chan. Advances of RNA virus increasing viral infection through the exosomes[J]. Microbiology, 2017, 44(12):2988-2996. doi:10.13344/j.microbiol.china.170390.
[24] 魏晓晶, 胡晓. 外泌体功能与临床应用研究进展[J]. 中国医药导报, 2018, 15(34):45-48. WEI Xiaojing, HU Xiao. Advances in the study of function and clinical application of exosomes[J]. China Medical Herald, 2018, 15(34):45-48.
[25] Pi F, Binzel DW, Lee TJ, et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression[J]. Nat Nanotechnol, 2018, 13(1):82-89. doi:10.1038/s41565-017-0012-z.
[26] 贺丁冬, 冯艳林, 明心亮, 等. 外泌体源性非编码RNA作为肝癌标志物的研究进展[J]. 武汉大学学报(医学版), 2020, 41(2):255-259. doi:10.14188/j.1671-8852.2019.0577. HE Dingdong, FENG Yanlin, MING Xinliang, et al. Exosome-derived non-coding RNA as biomarkers in hepatocellular carcinoma diagnosis[J]. Medical Journal of Wuhan University, 2020, 41(2):255-259. doi:10.14188/j.1671-8852.2019.0577.
[27] Shi X, Wang B, Feng X, et al. circRNAs and exosomes: a mysterious frontier for human cancer[J]. Mol Ther Nucleic Acids, 2020, 19:384-392. doi:10.1016/j.omtn.2019.11.023.
[28] Tai YL, Chen KC, Hsieh JT, et al. Exosomes in cancer development and clinical applications[J]. Cancer Sci, 2018, 109(8):2364-2374. doi:10.1111/cas.13697.
[29] Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478). doi:10.1126/science.aau6977.
[30] Wu G, Zhou W, Lin X, et al. circRASSF2 Acts as CeRNA and promotes papillary thyroid carcinoma progression through miR-1178/TLR4 signaling pathway[J]. Mol Ther Nucleic Acids, 2020, 19:1153-1163. doi:10.1016/j.omtn.2019.11.037.
[31] Wu G, Zhou W, Pan X, et al. Circular RNA profiling reveals exosomal circ_0006156 as a novel biomarker in papillary thyroid cancer[J]. Mol Ther Nucleic Acids, 2020, 19:1134-1144. doi:10.1016/j.omtn.2019.12.025.
[32] Ye W, Deng X, Fan Y. Exosomal miRNA423-5p mediated oncogene activity in papillary thyroid carcinoma: a potential diagnostic and biological target for cancer therapy[J]. Neoplasma, 2019, 66(4):516-523. doi:10.4149/neo_2018_180824n643.
[33] Wu Q, Sun S, Li Z, et al. Tumour-originated exosomal miR-155 triggers cancer-associated Cachexia to promote tumour progression[J]. Mol Cancer, 2018, 17(1):155. doi:10.1186/s12943-018-0899-5.
[34] Kalluri R. The biology and function of exosomes in cancer[J]. J Clin Investig, 2016, 126(4):1208-1215. doi:10.1172/jci81135.
[35] Wang M, Chen B, Ru Z, et al. CircRNA circ-ITCH suppresses papillary thyroid cancer progression through miR-22-3p/CBL/β-catenin pathway[J]. Biochem Biophys Res Commun, 2018, 504(1):283-288. doi:10.1016/j.bbrc.2018.08.175.
[36] Lee JC, Zhao JT, Gundara J, et al. Papillary thyroid cancer-derived exosomes contain miRNA-146b and miRNA-222[J]. J Surg Res, 2015, 196(1):39-48. doi:10.1016/j.jss.2015.02.027.
[37] Zhu LY, Gangadaran P, Kalimuthu S, et al. Novel alternatives to extracellular vesicle-based immunotherapy - exosome mimetics derived from natural killer cells[J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup3):S166-S179. doi:10.1080/21691401.2018.1489824.
[38] Samsonov R, Burdakov V, Shtam T, et al. Plasma exosomal miR-21 and miR-181a differentiates follicular from papillary thyroid cancer[J]. Tumour Biol, 2016, 37(9):12011-12021. doi:10.1007/s13277-016-5065-3.
[39] Jiang K, Li GP, Chen WJ, et al. Plasma exosomal miR-146b-5p and miR-222-3p are potential biomarkers for lymph node metastasis in papillary thyroid carcinomas[J]. Oncotargets Ther, 2020, 13:1311-1319. doi:10.2147/ott.s231361.
[40] Liang MH, Yu SM, Tang SL, et al. A panel of plasma exosomal miRNAs as potential biomarkers for differential diagnosis of thyroid nodules[J]. Front Genet, 2020, 11:449. doi:10.3389/fgene.2020.00449.
[41] Dai D, Tan Y, Guo L, et al. Identification of exosomal miRNA biomarkers for diagnosis of papillary thyroid cancer by small RNA sequencing[J]. Eur J Endocrinol, 2020, 182(1):111-121. doi:10.1530/eje-19-0524.
[42] Yang C, Wei Y, Yu L, et al. Identification of altered circular RNA expression in serum exosomes from patients with papillary thyroid carcinoma by high-throughput sequencing[J]. Med Sci Monit, 2019, 25:2785-2791. doi:10.12659/msm.915658.
[1] ZHANG Xuping, LIU Xuexia,ZHANG Hua. Current progress of exosome research in allergic diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 136-140.
[2] BIAN Xiaomin, HAN Guanghong, YU Dan. Recent advances regarding extracellular vesicles in head and neck cancers [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(1): 99-104.
[3] ZOU Liangyu, LI Lianhe, YUE Wenhui, HAN Zhipeng, ZHANG Zihui. Clinical significance and correlation between MIF and GSK-3β expression in laryngeal squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 76-80.
[4] ZHOU Wencheng, YUAN Yuan, CHENG Lei. Predictive biomarkers for dust mite specific immunotherapy in patients with allergic rhinitis. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(4): 43-49.
Full text



[1] LIN Bin,WANGHui-ge . Functional endoscopic sinus surgery, FESS[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(6): 481 -487 .
[2] GONG Lei,SUN Jie,XUE Zi-chao,LI Jing-hua,XUE Wei-guo . DNA analysis of the cell cycle in sino-nasal neoplasm[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 193 -195 .
[4] LUAN Jiangang,LIANG Chuanyu,WEN Yanjun,LI Jiong . Construction of RNAi expressing plasmid vector of pSIRENshuttle for EGFR gene silencing[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 4 -8 .
[5] MA Jing, ZHONG Cui-ping . Surgical method for nasopharyngeal fibroangioma encroaching on fossa pterygopalatina: with a report of 5 cases[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 30 -32 .
[6] LIU Qiang-he,LUO Xiang-lin,GENG Wan-ping,CHEN Chen,LEI Xun,LIU Fang-xian,DENG Ming . Age-related spiral ganglion neuron damages and hearing loss in senescence accelerated mice[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 215 -217 .