Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2021, Vol. 35 ›› Issue (6): 113-124.doi: 10.6040/j.issn.1673-3770.0.2020.478

Previous Articles     Next Articles

A review of squamous cell lines originating from the nasopharynx, oropharynx, laryngopharynx and larynx

FENG Chengmin1,2, JIN Yidan1,2,LIU Hai2, WANG Bing3   

  1. 1. Department of Otorhinolaryngology & Head Neck Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 63700, Sichuan, China;
    2. Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China;
    3. Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong 637000, Sichuan, China
  • Published:2021-12-10

Abstract: Larynx squamous cell carcinoma is a common malignant tumor of the head and neck region. The head and neck have complicated anatomical structure, and squamous cell carcinomas with different primary sites have different incidences, strategies of diagnosis and therapy, and even molecular pathogeneses. Therefore, selecting the suitable squamous cell carcinoma cell lines is important for researchers to determine appropriate preclinical research models and to have a better understanding of the mechanisms of tumorigenesis and progression. To provide a reference for researchers, this study summarizes the currently available squamous cell carcinoma cell lines originating from the nasopharynx, oropharynx, laryngopharynx and larynx.

Key words: Nasopharynx Carcinoma, Oropharynx Carcinoma, laryngopharynx Carcinoma, larynx carcinoma, Cell lines of squamous cell carcinoma

CLC Number: 

  • R739.6
[1] Ch'Ng ES. Head and neck cancer[J]. N Engl J Med, 2020, 382(20): e57. doi:10.1056/NEJMc2001370.
[2] Lin CJ, Grandis JR, Carey TE, et al. Head and neck squamous cell carcinoma cell lines: established models and rationale for selection[J]. Head Neck, 2007, 29(2): 163-188. doi:10.1002/hed.20478.
[3] Cohen EEW, Bell RB, Bifulco CB, et al. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck(HNSCC)[J]. J Immunother Cancer, 2019, 7(1): 184. doi:10.1186/s40425-019-0662-5.
[4] Chen TH, Chang PM, Yang MH. Novel immune-modulating drugs for advanced head and neck cancer[J]. Head Neck, 2019, 41(Suppl 1): 46-56. doi:10.1002/hed.25929.
[5] Wu CP, Zhou L, Gong HL, et al. Establishment and characterization of a novel HPV-negative laryngeal squamous cell carcinoma cell line, FD-LSC-1, with missense and nonsense mutations of TP53 in the DNA-binding domain[J]. Cancer Lett, 2014, 342(1): 92-103. doi:10.1016/j.canlet.2013.08.041.
[6] 郑家伟, 邱蔚六. 头颈癌研究现状与展望[J]. 实用肿瘤杂志, 2000, 15(6): 429-432. doi:10.3969/j.issn.1001-1692.2000.06.032.
[7] Chen YP, Chan ATC, Le QT, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. doi:10.1016/s0140-6736(19)30956-0.
[8] Huang DP, Ho JH, Poon YF, et al. Establishment of a cell line(NPC/HK1)from a differentiated squamous carcinoma of the nasopharynx[J]. Int J Cancer, 1980, 26(2): 127-132. doi:10.1002/ijc.2910260202.
[9] Takimoto T, Kamide M, Umeda R. Establishment of Epstein-Barr virus(EBV)-associated nuclear antigen(EBNA)-positive nasopharyngeal carcinoma hybrid cell line(NPC-KT)[J]. Arch Otorhinolaryngol, 1984, 239(1): 87-92. doi:10.1007/BF00454266.
[10] Busson P, Ganem G, Flores P, et al. Establishment and characterization of three transplantable EBV-containing nasopharyngeal carcinomas[J]. Int J Cancer, 1988, 42(4): 599-606. doi:10.1002/ijc.2910420422.
[11] Colburn NH, Raab-Traub N, Becker D, et al. Transforming activity of nasopharyngeal carcinoma DNA detectable in mouse JB6 cells[J]. Int J Cancer, 1989, 44(6): 1012-1016. doi:10.1002/ijc.2910440613.
[12] Chang YS, Lin SY, Lee PF, et al. Establishment and characterization of a tumor cell line from human nasopharyngeal carcinoma tissue[J]. Cancer Res, 1989, 49(23): 6752-6757.
[13] Li GY, Yao KT, Glaser R. Sister chromatid exchange and nasopharyngeal carcinoma[J]. Int J Cancer, 1989, 43(4): 613-618. doi:10.1002/ijc.2910430413.
[14] Lin CT, Wong CI, Chan WY, et al. Establishment and characterization of two nasopharyngeal carcinoma cell lines[J]. Lab Investig a J Tech Methods Pathol, 1990, 62(6): 713-724.
[15] Lin CT, Chan WY, Chen W, et al. Characterization of seven newly established nasopharyngeal carcinoma cell lines[J]. Lab Investig a J Tech Methods Pathol, 1993, 68(6): 716-727.
[16] Jie Liu, Xu-li Yang, Si-Wei Zhang, 等. 中国口咽癌的发病率、死亡率和时间格局: 一项基于人群的研究[J]. 癌症, 2019, 38(6): 272-281.
[17] 刘良发, 袁硕卿. 口咽癌诊断治疗进展[J]. 临床耳鼻咽喉头颈外科杂志, 2019,33(11): 1009-1013,1016. doi:10.13201/j.issn.1001-1781.2019.11.001. LIU Liangfa, YUAN Shuoqing. Progress in the diagnosis and treatment of oropharyngeal cancer[J]. J Clin Otorhinolaryngol Head Neck Surg, 2019,33(11): 1009-1013,1016. doi:10.13201/j.issn.1001-1781.2019.11.001.
[18] Peterson WD, Stulberg CS, Simpson WF. A permanent heteroploid human cell line with type B glucose-6-phosphate dehydrogenase[J]. Proc Soc Exp Biol Med, 1971, 136(4): 1187-1191. doi:10.3181/00379727-136-35455.
[19] Patel AM, Incognito LS, Schechter GL, et al. Amplification and expression of EMS-1(cortactin)in head and neck squamous cell carcinoma cell lines[J]. Oncogene, 1996, 12(1): 31-35.
[20] Krause CJ, Carey TE, Ott RW, et al. Human squamous cell carcinoma. Establishment and characterization of new permanent cell lines[J]. Arch Otolaryngol, 1981, 107(11): 703-710. doi:10.1001/archotol.1981.00790470051012.
[21] Brenner JC, Graham MP, Kumar B, et al. Genotyping of 73 UM-SCC head and neck squamous cell carcinoma cell lines[J]. Head Neck, 2010, 32(4): 417-426. doi:10.1002/hed.21198.
[22] LansfordC, Grenman R, Bier H, et al. Human Cell Culture [M]. Dordrecht: Springer. 2006: 185-255.
[23] Grénman R, Carey TE, McClatchey KD, et al. In vitro radiation resistance among cell lines established from patients with squamous cell carcinoma of the head and neck[J]. Cancer, 1991, 67(11): 2741-2747. doi:10.1002/1097-0142(19910601)67: 112741: aid-cncr2820671105>3.0.co;2-s.
[24] Buchhagen DL, Worsham MJ, Dyke DL, et al. Two regions of homozygosity on chromosome 3p in squamous cell carcinoma of the head and neck: comparison with cytogenetic analysis[J]. Head Neck, 1996, 18(6): 529-537. doi:10.1002/(SICI)1097-0347(199611/12)18: 6<529: AID-HED7>3.0.CO;2-4.
[25] Frank CJ, McClatchey KD, Devaney KO, et al. Evidence that loss of chromosome 18q is associated with tumor progression[J]. Cancer Res, 1997, 57(5): 824-827.
[26] SacksP, Parnes S, Gallick G, et al. Establishment and characterization of two new squamous cell carcinoma cell lines derived from tumors of the head and neck [J]. Cancer Research, 1988, 48, 2858-2866.
[27] Heo DS, Snyderman C, Gollin SM, et al. Biology, cytogenetics, and sensitivity to immunological effector cells of new head and neck squamous cell carcinoma lines[J]. Cancer Res, 1989, 49(18): 5167-5175.
[28] Somers KD, Merrick MA, Lopez ME, et al. Frequent p53 mutations in head and neck cancer[J]. Cancer Res, 1992, 52(21): 5997-6000.
[29] van Dyke DL, Worsham MJ, Benninger MS, et al. Recurrent cytogenetic abnormalities in squamous cell carcinomas of the head and neck region[J]. Genes Chromosomes Cancer, 1994, 9(3): 192-206. doi:10.1002/gcc.2870090308.
[30] Balló H, Koldovsky P, Hoffmann T, et al. Establishment and characterization of four cell lines derived from human head and neck squamous cell carcinomas for an autologous tumor-fibroblast in vitro model[J]. Anticancer Res, 1999, 19(5B): 3827-3836.
[31] Beckhardt RN, Kiyokawa N, Xi L, et al. HER-2/neu oncogene characterization in head and neck squamous cell carcinoma[J]. Arch Otolaryngol Head Neck Surg, 1995, 121(11): 1265-1270. doi:10.1001/archotol.1995.01890110041008.
[32] Forslund O, Sugiyama N, Wu CJ, et al. A novel human in vitro papillomavirus type 16 positive tonsil cancer cell line with high sensitivity to radiation and cisplatin[J]. BMC Cancer, 2019, 19(1): 265. doi:10.1186/s12885-019-5469-8.
[33] Hinerman RW, Amdur RJ, Mendenhall WM, et al. Hypopharyngeal carcinoma[J]. Curr Treat Options Oncol, 2002, 3(1): 41-49. doi:10.1007/s11864-002-0040-1.
[34] Cooper JS, Porter K, Mallin K, et al. National Cancer Database report on cancer of the head and neck: 10-year update[J]. Head Neck, 2009, 31(6): 748-758. doi:10.1002/hed.21022.
[35] 许雅. 771例下咽癌患者综合治疗的临床疗效分析[D]. 济南: 山东大学, 2019. XU Ya. The clinical analysis of comprehensive treatment for 771 cases of hypopharyngeal cancer[D]. Jinan: Shandong University, 2019.
[36] Rangan SR. A new human cell line(FaDu)from a hypopharyngeal carcinoma[J]. Cancer, 1972, 29(1): 117-121. doi:10.1002/1097-0142(197201)29: 1<117: aid-cncr2820290119>3.0.co;2-r.
[37] Carey TE, Kimmel KA, Schwartz DR, et al. Antibodies to human squamous cell carcinoma[J]. Otolaryngol-Head Neck Surg, 1983, 91(5): 482-491. doi:10.1177/019459988309100503.
[38] Weichselbaum RR, Dahlberg W, Beckett M, et al. Radiation-resistant and repair-proficient human tumor cells may be associated with radiotherapy failure in head- and neck-cancer patients[J]. Proc Natl Acad Sci USA, 1986, 83(8): 2684-2688. doi:10.1073/pnas.83.8.2684.
[39] Weichselbaum RR, Beckett MA, Vijayakumar S, et al. Radiobiological characterization of head and neck and sarcoma cells derived from patients prior to radiotherapy[J]. Int J Radiat Oncol Biol Phys, 1990, 19(2): 313-319. doi:10.1016/0360-3016(90)90539-v.
[40] Heo DS, Snyderman C, Gollin SM, et al. Biology, cytogenetics, and sensitivity to immunological effector cells of new head and neck squamous cell carcinoma lines[J]. Cancer Res, 1989, 49(18): 5167-5175.
[41] Yin XY, Donovan-Peluso M, Whiteside TL, et al. Gene amplification and gene dosage in cell lines derived from squamous cell carcinoma of the head and neck[J]. Genes Chromosomes Cancer, 1991, 3(6): 443-454. doi:10.1002/gcc.2870030606.
[42] Snyderman CH, Klapan I, Milanovich M, et al. Comparison of in vivo and in vitro prostaglandin E2 production by squamous cell carcinoma of the head and neck[J]. Otolaryngol Head Neck Surg, 1994, 111(3 Pt 1): 189-196. doi:10.1177/01945998941113P105.
[43] Sung MW, Yasumura S, Johnson JT, et al. Natural killer(NK)cells as effectors of antibody-dependent cytotoxicity with chimeric antibodies reactive with human squamous-cell carcinomas of the head and neck[J]. Int J Cancer, 1995, 61(6): 864-872. doi:10.1002/ijc.2910610620.
[44] Myers JN, Yasumura S, Suminami Y, et al. Growth stimulation of human head and neck squamous cell carcinoma cell lines by interleukin 4[J]. Clin Cancer Res, 1996, 2(1): 127-135.
[45] Johansson N, Airola K, Grénman R, et al. Expression of collagenase-3(matrix metalloproteinase-13)in squamous cell carcinomas of the head and neck[J]. Am J Pathol, 1997, 151(2): 499-508.
[46] Kim SY, Chu KC, Lee HR, et al. Establishment and characterization of nine new head and neck cancer cell lines[J]. Acta Otolaryngol, 1997, 117(5): 775-784. doi:10.3109/00016489709113477.
[47] Chikamatsu K, Sakakura K, Yamamoto T, et al. CD4+ T helper responses in squamous cell carcinoma of the head and neck[J]. Oral Oncol, 2008, 44(9): 870-877. doi:10.1016/j.oraloncology.2007.11.001.
[48] Yamashita Y, Ishiguro Y, Sano D, et al. Antitumor effects of Nafamostat mesilate on head and neck squamous cell carcinoma[J]. Auris Nasus Larynx, 2007, 34(4): 487-491. doi:10.1016/j.anl.2006.12.002.
[49] 林云, 潘新良, 刘大昱, 等. 局部组织瓣在喉切除术后一期重建中的应用[J]. 山东大学耳鼻喉眼学报, 2018,32(1): 56-60. doi:10.6040 /j.issn.1673-3770.0.2017.526. LIN Yun, PAN Xinliang, LIU Dayu, et al. The application of local tissue flaps in primary reconstruction of laryngeal function after laryngectomy[J]. J Otolaryngol Ophthalmol Shandong Univ, 2018,32(1): 56-60. doi:10.6040 /j.issn.1673-3770.0.2017.526.
[50] 朱晓城, 钱晓云, 顾亚军, 等. MGMT和EGFR蛋白在喉鳞状细胞癌中的表达及临床意义[J]. 山东大学耳鼻喉眼学报, 2017,31(4): 68-72. doi:10.6040/j.issn.1673-3770.0.2017.116. ZHU Xiaocheng, QIAN Xiaoyun, GU Yajun, et al. Expression and clinical value of MGMT and EGFR in laryngeal squamous cell carcinoma[J]. J Otolaryngol Ophthalmol Shandong Univ, 2017,31(4): 68-72. doi:10.6040/j.issn.1673-3770.0.2017.116.
[51] 陈文杰,王斌全,高伟,等.喉癌流行病学特征及影响因素分析[J]. 中国当代医药, 2015, 22(12): 43-46.doi: CHEN Wenjie, WANG Binquan, GAO Wei, et al. Analysis of epidemiologic features and influence factors of carcinoma of larynx[J]. China Modern Medicine, 2015, 22(12): 43-46. doi:
[52] Moore AE, Sabadchewsky L, Toolan H. Culture characteristics of four permanent lines of human cancer cells [J]. Cancer Research, 1955, 15(9): 598-602. doi: 10.1002/1097-0142(1955)8:6<1261:AID-CNCR2820080625>3.0.CO;2-Q.
[53] Zenner HP, Lehner W, Herrmann IF. Establishment of carcinoma cell lines from larynx and submandibular gland[J]. Arch Otorhinolaryngol, 1979, 225(4): 269-277. doi:10.1007/BF00455679.
[54] Zenner HP, Herrmann IF, Bremer W, et al. Head and neck carcinoma models. In vivo reproduction in athymic mice and in vitro culture[J]. Acta Otolaryngol, 1983, 95(3/4): 371-381. doi:10.3109/00016488309130956.
[55] Easty DM, Easty GC, Carter RL, et al. Ten human carcinoma cell lines derived from squamous carcinomas of the head and neck[J]. Br J Cancer, 1981, 43(6): 772-785. doi:10.1038/bjc.1981.115.
[56] Krause CJ, Carey TE, Ott RW, et al. Human squamous cell carcinoma. Establishment and characterization of new permanent cell lines[J]. Arch Otolaryngol, 1981, 107(11): 703-710. doi:10.1001/archotol.1981.00790470051012.
[57] Dunphy EJ, Beckett MA, Thompson LH, et al. Expression of the polymorphic human DNA repair gene XRCC1 does not correlate with radiosensitivity in the cells of human head and neck tumor cell lines[J]. Radiat Res, 1992, 130(2): 166. doi:10.2307/3578273.
[58] Rupniak HT, Rowlatt C, Lane EB, et al. Characteristics of four new human cell lines derived from squamous cell carcinomas of the head and neck[J]. J Natl Cancer Inst, 1985, 75(4): 621-635.
[59] Sacks PG, Oke V, Amos B, et al. Modulation of growth, differentiation and glycoprotein synthesis by beta-all-trans retinoic acid in a multicellular tumor spheroid model for squamous carcinoma of the head and neck[J]. Int J Cancer, 1989, 44(5): 926-933. doi:10.1002/ijc.2910440530.
[60] Sacchi M, Klapan I, Johnson JT, et al. Antiproliferative effects of cytokines on squamous cell carcinoma[J]. Arch Otolaryngol Head Neck Surg, 1991, 117(3): 321-326. doi:10.1001/archotol.1991.01870150089012.
[61] Nagashima S, Mailliard R, Kashii Y, et al. Stable transduction of the interleukin-2 gene into human natural killer cell lines and their phenotypic and functional characterization in vitro and in vivo[J]. Blood, 1998, 91(10): 3850-3861.
[62] Pekkola-Heino K, Kulmala J, Grenman R. Sublethal damage repair in squamous cell carcinoma cell lines[J]. Head Neck, 1992, 14(3): 196-199. doi:10.1002/hed.2880140306.
[63] Servomaa K, Kiuru A, Grénman R, et al. p53 mutations associated with increased sensitivity to ionizing radiation in human head and neck cancer cell lines[J]. Cell Prolif, 1996, 29(5): 219-230. doi:10.1046/j.1365-2184.1996.01009.x.
[64] Kiuru A, Servomaa K, Grénman R, et al. p53 mutations in human head and neck cancer cell lines[J]. Acta Oto - Laryngol, 1997, 117(sup529): 237-240. doi:10.3109/00016489709124132.
[65] Elomaa L, Joensuu H, Kulmala J, et al. Squamous cell carcinoma is highly sensitive to taxol, a possible new radiation sensitizer[J]. Acta Otolaryngol, 1995, 115(2): 340-344. doi:10.3109/00016489509139325.
[66] Ku JL, Kim WH, Lee JH, et al. Establishment and characterization of human laryngeal squamous cell carcinoma cell lines[J]. Laryngoscope, 1999, 109(6): 976-982. doi:10.1097/00005537-199906000-00025.
[67] 马丽晶, 韩德民, 张伟, 等. 喉癌细胞系LSC-1的建立及生物学特性的初步研究[J]. 耳鼻咽喉头颈外科, 2002, 9(5): 295-298,324-325. doi:10.3969/j.issn.1672-7002.2002.05.014. MA Lijing, HAN Demin, ZHANG Wei, et al. A preliminary study on establishment and characterization of a human laryngeal squamous carcinoma cell line[J]. Chinese Archives of Otolaryngology-Head and Neck Surgery, 2002, 9(5):295-298. 324-325. doi:10.3969/j.issn.1672-7002.2002.05.014.
[68] Rzeski W, Paduch R, Klatka J, et al. Establishment and preliminary characterization of two cell lines derived from larynx carcinoma[J]. Folia Histochem Cytobiol, 2002, 40(2): 195-196.
[69] Croce MV, Colussi AG, Zambelli A, et al. Establishment and characterization of a cell line(T201)derived from a human larynx squamous cell carcinoma[J]. Int J Oncol, 2001, 18(4): 729-735.
[70] 任乐荣, 刘玉琴, 李正江, 等. 人喉癌细胞系的建立及生物学特性研究[J]. 首都医科大学学报, 2006, 27(5): 612-615. doi:10.3969/j.issn.1006-7795.2006.05.014. REN Lerong, LIU Yuqin, LI Zhengjiang, et al. Establishment and charateristics research of human laryngeal squamous carcinoma cell line[J]. J Cap Univ Med Sci, 2006, 27(5): 612-615. doi:10.3969/j.issn.1006-7795.2006.05.014.
[71] 蔡萍, 吴展元, 刘公汉, 等. 人乳头瘤病毒阴性的喉鳞癌细胞系的建立[J]. 中华病理学杂志, 2005, 34(8): 533-536. doi:10.3760/j.issn:0529-5807.2005.08.038. CAI Ping, WU Zhanyuan, LIU Gonghan, et al. Establishment of a HPV-negative cell line derived from xenografted human laryngeal squamous cell carcinoma[J]. Chin J Pathol, 2005, 34(8): 533-536. doi:10.3760/j.issn:0529-5807.2005.08.038.
[72] 王茹,卞晓翠,刘玉琴,等. 喉鳞状细胞癌细胞系的建立及其生物学特性研究[J]. 中华耳鼻咽喉头颈外科杂志, 2017, 52(1):44-48. doi:10.3760/cma.j.issn.1673-0860.2017.01.008. WANG Ru, BIAN Xiaocui, LIU Yuqin, et al. Establishment and characterization of a laryngeal squamous cell carcinoma cell line[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2017, 52(1):44-48. doi:10.3760/cma.j.issn.1673-0860.2017.01.008.
[1] MA Jingyuan, WU Tianyi, SUN Zhanwei, WANG Weiwei, LI Shichao, WANG Guangke. Correlation between sinonasal inverted papilloma and peripheral inflammatory blood markers [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 35-39.
[2] The objective of this study was to analyze the effects and possible regulatory mechanisms that Notch receptors could have on cisplatin resistance, observed in nasopharyngeal carcinoma. MethodsWestern blot analysis was used for the detection of Notch receptor expression in nasopharyngeal carcinoma cells and cisplatin-resistant nasopharyngeal carcinoma cells(5-8F, 5-8F/CDDP). Flow cytometry was used to investigate how the combined treatment with 10 μM CDDP and different concentrations of γ-secretase inhibitor(DAPT)could affect apoptosis in 5-8F/CDDP cells. Flow cytometry was also used for the detection of cell cycle stages in DAPT-treated 5-8F / CDDP cells. Finally, western blotting was also used for the detection of drug resistance-related protein expression. All experiments were followed by statistical data analysis. ResultsWe observed significantly higher Notch1 and Notch4 receptor expression in 5-8F/CDDP cells than in 5-8F cells(P=0.003, P=0.004). Furthermore, we described that Notch signaling was inhibited by DAPT in 5-8F/CDDP cells, followed by a significant increase in the apoptosis rate and decrease in cell proliferation, induced by cisplatin in a dose-dependent manner(P<0.05). Moreover, after inhibiting the Notch signaling pathway in 5-8F/CDDP cells, DAPT treatment significantly decreased the expression of Cyclin E and CDK-2, proteins involved in cell cycle regulation, and contributed to blocking the cells in the G1/S phase(P<0.05). At the same time, the expression levels of both the EMT-related protein Slug and the DNA excision repair protein ERCC1 significantly decreased, while that of E-Cadherin was up-regulated. ConclusionUp-regulated expression of Notch1 and Notch4 receptors is associated with cisplatin resistance in nasopharyngeal carcinoma cells. The inactivation of the Notch signaling pathway might thus have the potential to enhance the efficiency of cisplatin chemotherapy in drug-resistant nasopharyngeal carcinoma cells by inhibiting EMT rather than blocking the G1/S cell cycle phase.. Cisplatin resistance in nasopharyngeal carcinoma cells is affected by Notch receptors through the regulation of epithelial-mesenchymal transition rather than cell cycle controlHAN Jibo, ZOU You, YANG Rui, TAO Zezhang Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, ChinaAbstract:Objective〓 [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 105-110.
[3] ObjectiveThe aim of this study was to provide new perspectives and targets for the treatment of HNSCC by screening differentially expressed genes during cetuximab treatment of head and neck squamous cell carcinoma(HNSCC)using bioinformatics. MethodsThe chip dataset, GSE109756, was downloaded from the GEO database, and the online analysis tool, GEO2R, was used to screen differentially expressed genes in head and neck squamous cell carcinoma tissues treated with and without cetuximab. The DAVID 6.8 and STRING online software were used to analyze the function of the differentially expressed genes, their pathway enrichment, and their protein interactions. Cytoscape was used to visualize and analyze the protein interactions. The online analysis tool, X2K, was used to find the transcription factors, the kinases of differentially expressed genes, and their mutual regulatory relationship with the targeted genes. ResultsNinety-one differentially expressed genes, including 50 up-regulated and 41 down-regulated genes(P<0.05; | logFC | > 1), were found in head and neck squamous cell carcinoma tissues treated with and without cetuximab. The GO and KEGG pathway analyses suggested that these differentially expressed genes were mainly enriched with immunomodulation, extracellular matrix, and other processes. Through the construction of a protein-protein interaction network, we screened CD163, VSIG4, and 3 other core differentially expressed genes(P<0.05), which were up-regulated after cetuximab treatment. In addition, our analysis shows that transcription factors, including SUZ12, TP63, and ESR1, played a key role in cetuximab treatment(P<0.05)and MAPK14, CDK1, and MAPK1 were the most important kinases during the process(P<0.05). ConclusionCD163, VSIG4, and the aforementioned transcription factors and protein kinases may be involved in the biological processes that underlie cetuximab treatment of HNSCC. This study provides new perspectives to facilitate further understanding of the biological mechanism that underlies cetuximab treatment of HNSCC and the exploration of the effectiveness of HNSCC treatment.. Analysis of differentially expressed genes during cetuximab treatment of head and neck squamous cell carcinoma using bioinformaticsYU Kena1, SUN Kaiyue2, ZHANG Jie1, JIN Peng1 1. Department of Otorhinolaryngology & Head and Neck Surgery, The Second Hospital of Shandong University, Jinan 250033, Shandong, China; 2. Shandong Provincial Otorhinolaryngology Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250022, Shandong, ChinaAbstract: [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 117-124.
[4] DENG Di, LIU Jun, LI Linke, WANG Ji, LIU Jifeng, LV Dan, WANG Haiyang, GAN Weigang, WANG Jun, LI Bo, CHEN Fei. Two-stage reconstructive strategy using a flap for non-circumferential tracheal defects [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 52-57.
[5] Jian FENG,Han ZHOU,Shenghua SONG,Qing ZHAO,Jiacheng ZHANG,Yaqin LIU,Yujie SHEN,Weida DONG. Clinical analysis of 15 cases of adenoid cystic carcinoma in the paranasal sinuses and nasal cavity [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(5): 87-91.
[6] Lin LI,Heng ZHANG,Yufei XIAN,Xiaoli SHENG. Expression and biological function of long chain non-coding cytoskeleton regulator RNA in nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(5): 69-72.
[7] DING Jie, SUN Yan. Survey of overall sleep quality in 142 patients with laryngectomy [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 76-81.
[8] HUANG He, OUYANG Hui. Risk factors and prognosis of esophageal cancer with hypopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 82-86.
[9] ZHANG Xiaoping, YANG Dengquan, WANG Shaoxin, HUANG Xiaoming. Effects of continuous out-of-hospital administration on the quality of life in patients with laryngeal cancer [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 169-174.
[10] Ming LIU. Transoral laser microsurgery for early glottic neoplasms [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 6-9.
[11] Xiaohan SUN,Na LI. Application of laryngeal retention strategy in the treatment of laryngeal cancer - introduction to the clinical practice guide of the American Society of Clinical Oncology (2017) [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 40-42.
[12] Zelei HUANG,Qi SONG,Xiuying LU,Lanzhen CUI,Xiaoming LI. Effects of dihydroartemisinin on endoreticulum stress pathway in FaDu hypopharyngeal carcinoma cells [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 31-35.
[13] Yupeng SHEN,Qi SONG,Xiaoming LI. Etiology, molecular mechanisms, and treatment strategies of precancerous laryngeal lesions [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 25-30.
[14] Kun LIU,Xinxin ZHANG. Progress in clinical research on circulating tumor cells in squamous cell carcinoma of the head and neck [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 18-24.
[15] Xiaoming LI. History, current status and future of laryngeal function retention in laryngeal cancer treatment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(2): 116 -118 .
[2] ZHOU Zi-ning,JIN Guo-wei . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(5): 462 -465 .
[3] ZHOU Bin,LI Bin . Endoscopic sinus surgery for 75 patients with chronic sinusitis and nasal polyps[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 24 -26 .
[4] XU Sainan,YANG Lei . Apoptosis of epithelial cells in nasal polyps promoted by erythromycin[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 27 -29 .
[5] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 94 -95 .
[6] LIU Lian-he . Treatment of deep neck abscess in 37 cases[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(2): 180 -181 .
[7] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 200 -203 .
[8] QIAO Yi,NI Guan-sen,CHEN Wen-wen . Effect of H-UPPP and nasal operations on obstructive sleep apnea syndrome in 38 cases
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 206 -208 .
[9] WANG Xiao-feng,LIN Chang,CHENG Jin-mei . Expression of ABAD in inner ears and its clinical significance in different age mice[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 207 -211 .
[10] FAN Qi-jun,HUANG Zhi-wu,MEI Ling,XIAO Bo-kui . Expression of the heat shock protein 27 in rat cochlea induced by sodium salicylate injection by the FQ-PCR technique[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 212 -214 .