Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2021, Vol. 35 ›› Issue (5): 85-92.doi: 10.6040/j.issn.1673-3770.0.2021.145

Previous Articles     Next Articles

Comparison of anterior segment analyzers: the Oculyzer and CASIA2

XU Wen, ZHENG Yan, FU Caiyun, ZHANG Li, WANG Yue, ZHANG Qiulu, LIU Jing, HU Yabin, ZHAI Changbin   

  1. Beijing Tongren Ophthalmology Center / Beijing Tongren Ophthalmology Center Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
  • Published:2021-09-29

Abstract: Objective To compare the differences in corneal refractive power, corneal thickness, and Q value measured by the Oculyzer and CASIA2 devices in patients with myopia. Methods This study evaluated 249 eyes in 125 patients with myopia. The steep keratometry diopter(Ks), flat keratometry diopter(Kf), mean keratometry diopter(Km), astigmatism degree, Q values of the anterior and posterior corneal surfaces, central corneal thickness(CCT), and thinnest point of the corneal thickness(TCT)were recorded. The differences and agreement between measurements were evaluated using paired t-tests and Bland Altman plots., respectively. Results The Ks, Kf, and Km values of the anterior corneal surface measured by the Oculyzer and CASIA2 differed significantly [(44.23±1.71)D vs(44.38±1.64)D,(42.71±1.39)D vs(42.87±1.35)D, and(43.45±1.48)D vs(43.63±1.44)D, respectively)](all P<0.001). The astigmatism degrees of the anterior corneal surface(1.51±0.90)D vs(1.50±0.87)D did not differ significantly(P=0.98). The Ks, Kf, and astigmatism degrees of the posterior corneal surface measured by the two instruments also differed significantly [(-6.50±0.86)D vs(-6.35±0.29)D,(-6.02±0.26)vs(-5.97±0.24)D, and(0.52±0.22)D vs(0.38±0.15)D, respectively](all P<0.001). The Km values of the posterior corneal surface(-6.17±1.15)D vs(-6.16±0.25)D did not differ significantly(P=0.87). The CCT and TCT measured by the two instruments [(542.86±33.04)μm vs(529.53±32.35)μm and(539.72±33.39)μm vs(524.66±32.40)μm differed significantly(all P<0.001). The Q values of the anterior corneal surface measured by the two instruments(-0.33±0.12)vs(-0.33±0.13)did not differ significantly(P=0.62). The Q values of the posterior corneal surface(-0.28±0.17)vs(-0.38±0.16)significantly(P<0.001). Bland-Altman analysis showed that the 95% limit of agreement(LoA)of the anterior and posterior corneal surface refractive power, astigmatism degree, and Q values measured by the two devices were relatively narrow and showed good consistency. However, the 95%LoA of CCT and TCT between the two devices was relatively wide and showed poor consistency. Conclusions The differences in corneal refractive power, corneal thicknesses, and Q values between the Oculyzer and CASIA2 suggest the need for comprehensive analysis and selection in clinical practice.

Key words: Oculyzer, CASIA2, Anterior segment analyzer, Corneal refractive power, Corneal thickness

CLC Number: 

  • R765.21
[1] Hamer CA, Buckhurst H, Purslow C, et al. Comparison of reliability and repeatability of corneal curvature assessment with six keratometers[J]. Clin Exp Optom, 2016, 99(6): 583-589. doi:10.1111/cxo.12329.
[2] Jesus DA, Iskander DR. Age-related changes of the corneal speckle by Optical Coherence Tomography[J]. Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Int Conf, 2015, 2015: 5659-5662. doi:10.1109/EMBC.2015.7319676.
[3] Jin HY, Ou ZM, Guo HK, et al. Myopic laser corneal refractive surgery reduces interdevice agreement in the measurement of anterior corneal curvature[J]. Eye Contact Lens, 2018, 44(Suppl 1): S151-S157. doi:10.1097/ICL.0000000000000364.
[4] 李凯军, 高东鸿, 张冬松, 等. 眼前节处理系统个体化切削治疗复杂屈光不正[J]. 山东大学耳鼻喉眼学报, 2012,26(5): 5-6. doi: 10.6040/j.issn.1673-3770.2012.05.003. LI Kaijun, GAO Donghong, ZHANG Dongsong, et al. Topography-guided customized corneal ablation for complex refractive errors[J]. J Otolaryngol Ophthalmol Shandong Univ, 2012, 26(5): 5-6. doi: 10.6040/j.issn.1673-3770.2012.05.003.
[5] Chen X, Gu X, Wang W, et al. The characteristics and factors associated with intraocular lens tilt and decentration after cataract surgery[J]. J Cataract Refract Surg, 2020, 46(8): 1126-1131. doi: 10.1097/j.jcrs.0000000000000219.
[6] Li XP, Zhou YJ, Young CA, et al. Comparison of a new anterior segment optical coherence tomography and Oculus Pentacam for measurement of anterior chamber depth and corneal thickness[J]. Ann Transl Med, 2020, 8(14): 857. doi:10.21037/atm-20-187.
[7] Shoji T, Kato N, Ishikawa S, et al. In vivo crystalline lens measurements with novel swept-source optical coherent tomography: an investigation on variability of measurement[J]. BMJ Open Ophthalmol, 2017, 1(1): e000058. doi:10.1136/bmjophth-2016-000058.
[8] Hoshikawa R, Kamiya K, Fujimura F, et al. Comparison of conventional keratometry and total keratometry in normal eyes[J]. Biomed Res Int, 2020, 2020: 8075924. doi:10.1155/2020/8075924.
[9] Næser K, Savini G, Bregnhj JF. Corneal Powers measured with a rotating Scheimpflug camera[J]. Br J Ophthalmol, 2016, 100(9): 1196-1200. doi:10.1136/bjophthalmol-2015-307474.
[10] Saito A, Kamiya K, Fujimura F, et al. Comparison of angle-to-angle distance using three devices in normal eyes[J]. Eye(Lond), 2020, 34(6): 1116-1120. doi:10.1038/s41433-019-0653-2.
[11] Liu Z, Ruan X, Wang W, et al. Comparison of radius of anterior lens surface curvature measurements in vivo using the anterior segment optical coherence tomography and Scheimpflug imaging[J]. Ann Transl Med, 2020, 8(5): 177. doi: 10.21037/atm.2020.01.100.
[12] Schiano-Lomoriello D, Bono V, Abicca I, et al. Repeatability of anterior segment measurements by optical coherence tomography combined with Placido disk corneal topography in eyes with keratoconus[J]. Sci Rep, 2020, 10(1): 1124. doi:10.1038/s41598-020-57926-7.
[13] Lu M, Wang X, Lei L, et al. Quantitative analysis of anterior chamber inflammation using the novel CASIA2 optical coherence tomography[J]. Am J Ophthalmol, 2020, 216: 59-68. doi: 10.1016/j.ajo.2020.03.032.
[14] Kimura S, Morizane Y, Shiode Y, et al. Assessment of tilt and decentration of crystalline lens and intraocular lens relative to the corneal topographic axis using anterior segment optical coherence tomography[J]. PLoS One, 2017, 12(9): e0184066. doi:10.1371/journal.pone.0184066.
[15] Xu BY, Penteado RC, Weinreb RN. Diurnal variation of optical coherence tomography measurements of static and dynamic anterior segment parameters[J]. J Glaucoma, 2018, 27(1): 16-21. doi:10.1097/IJG.0000000000000832.
[16] Zhang T, Zhou Y, Young CA, et al. Comparison of a new swept-source anterior segment optical coherence tomography and a scheimpflug camera for measurement of corneal curvature[J]. Cornea, 2020, 39(7): 818-822. doi:10.1097/ico.0000000000002280.
[17] Satou T, Kato S, Igarashi A, et al. Prediction of pupil size under binocular open-view settings using the new CASIA2 device[J]. Int Ophthalmol, 2019, 39(4): 791-796. doi: 10.1007/s10792-018-0879-1.
[18] Jin GM, Xiao B, Zhou YJ, et al. Agreement of corneal curvature and central corneal thickness obtained from a swept-source OCT and Pentacam in ectopia lentis patients[J]. Int J Ophthalmol, 2020, 13(8): 1244-1249. doi:10.18240/ijo.2020.08.10.
[19] 高奕晨, 蒋元丰, 林松, 等. 新型眼前节相干光层析成像仪与Scheimpflug眼前节分析仪测量年龄相关性白内障患者角膜屈光力及散光的比较[J]. 中华眼科杂志, 2021, 57(1): 48-55. doi:10.3760/cma.j.cn112142-20200904-00574. Gao YC, Jiang YF, Lin S, et al. Comparison of corneal refractive power and astigmatism measured by the new anterior segment optical coherence tomographic device and Scheimpflug imaging device in age-related cataract patients[J]. Zhonghua Yan Ke Za Zhi, 2021, 57(1): 48-55. doi:10.3760/cma.j.cn112142-20200904-00574.
[20] 刘俐利, 陈辉. Pentacam眼前节测量分析系统对青壮年近视患者角膜前、后表面Q值的测量和分析[J]. 眼视光学杂志, 2009, 11(1): 23-26. doi: CNKI:SUN:ZXYK.0.2009-01-011. LIU Lingli, CHEN Hui. Investigation of the Q-values of the anterior and posterior corneal surfaces of young myopic patients using a Pentacam measurement system and an evaluation system for the anterior segment of the eye[J]. Chinese Journal of Optometry & Ophthalmology, 2009, 11(1): 23-26. doi: CNKI:SUN:ZXYK.0.2009-01-011.
[21] Alió JL, Piñero D, Muftuoglu O. Corneal wavefront-guided retreatments for significant night vision symptoms after myopic laser refractive surgery[J]. Am J Ophthalmol, 2008, 145(1): 65-74. doi:10.1016/j.ajo.2007.08.025.
[22] 刘文静. TransPRK与LASEK对薄角膜近视眼术后视力、屈光度及角膜生物力学性能的影响[J]. 山东大学耳鼻喉眼学报, 2016, 30(6): 70-74. doi: 10.6040/j.issn.1673-3770.0.2015.502. LIU Wenjing. Influence of Trans PRK and LASEK on postoperative vision, diopter and corneal biomechanical properties in myopic eyes with thin cornea[J]. J Otolaryngol Ophthalmol Shandong Univ, 2016, 30(6): 70-74. doi: 10.6040/j.issn.1673-3770.0.2015.502.
[23] Chung B, Lee H, Choi BJ, et al. Clinical outcomes of an optimized prolate ablation procedure for correcting residual refractive errors following laser surgery[J]. Korean J Ophthalmol, 2017, 31(1): 16-24. doi: 10.3341/kjo.2017.31.1.16.
[24] Christopher KL, Patnaik JL, Miller DC, et al. Accuracy of intraoperative aberrometry, barrett true-K with and without posterior cornea measurements, shammas-PL, and haigis-L formulas after myopic refractive surgery[J]. J Refract Surg Thorofare N J, 2021, 37(1): 60-68. doi:10.3928/1081597X-20201030-02.
[25] Piao JJ, Li YJ, Whang WJ, et al. Comparative evaluation of visual outcomes and corneal asphericity after laser-assisted in situ keratomileusis with the six-dimension Amaris excimer laser system[J]. PLoS One, 2017, 12(2): e0171851. doi:10.1371/journal.pone.0171851.
[26] Gjerdrum B, Gundersen KG, Lundmark PO, et al. Repeatability of OCT-based versus scheimpflug- and reflection-based keratometry in patients with hyperosmolar and normal tear film[J]. Clin Ophthalmol, 2020, 14: 3991-4003. doi:10.2147/OPTH.S280868.
[27] Xu BY, Mai DD, Penteado RC, et al. Reproducibility and agreement of anterior segment parameter measurements obtained using the CASIA2 and spectralis OCT2 optical coherence tomography devices[J]. J Glaucoma, 2017, 26(11): 974-979. doi:10.1097/IJG.0000000000000788.
[28] Schröder S, Mäurer S, Eppig T, et al. Comparison of corneal tomography: repeatability, precision, misalignment, mean elevation, and mean pachymetry[J]. Curr Eye Res, 2018, 43(6): 709-716. doi:10.1080/02713683.2018.1441873.
[1] ZHANG Chun-xiao, LI Zhi-wei, XU Wen-wen, LI Feng-jiao, TAO Xiang-chen, MU Guo-ying. Efficacy and safety evaluation of UVA/riboflavin crosslinking for late and thin cornea keratoconus [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(2): 86-88.
[2] GAO Dong-hong, LU Hui, LI Kai-jun, ZHANG Dong-xiang, YAO Xue. Changes of anterior chamber before and after pneumatic trabeculoplasty in primary open-angle glaucoma and ocular hypertension [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2014, 28(3): 71-72.
[3] GAO Li-fen, LU Hui, LIU Zheng, GAO Dong-hong, ZHANG Dong-xiang. Value of Oculyzer anterior segment analysis system used before and after laser periphery iridectomy [J]. J Otolaryngol Ophthalmol Shandong Univ, 2013, 27(3): 60-61.
[4] LI Kai-jun, GAO Dong-hong, ZHANG Dong-song, JIANG Gui-fang, LU Hui, SHANG Hui-fang, WANG Quan. Topography-guided customized corneal ablation for complex refractive errors [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2012, 26(5): 5-5.
[5] JIANG Yang1, QIU Jia-ji2, JIN Yu-mei1, LI Ying1. Application of ocular response analyzer in the intraocular pressure measurement [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2012, 26(4): 58-60.
[6] YANG Xue-qiu1, ZHAO Jing-jing1, ZHUANG Wen-juan2. Measurements of corneal thickness in the clinic [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2012, 26(2): 80-82.
[7] LEI Yu-lin1, ZHENG Xiu-yun1, DANG Guang-fu2, LIU Su-mei1. Comparison of corneal thickness measurements using pentacam, orbscan II, and A-ultrasonic pachymetry in myopia [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2011, 25(2): 89-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(2): 116 -118 .
[2] ZHOU Zi-ning,JIN Guo-wei . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(5): 462 -465 .
[3] ZHOU Bin,LI Bin . Endoscopic sinus surgery for 75 patients with chronic sinusitis and nasal polyps[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 24 -26 .
[4] XU Sainan,YANG Lei . Apoptosis of epithelial cells in nasal polyps promoted by erythromycin[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 27 -29 .
[5] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 94 -95 .
[6] LIU Lian-he . Treatment of deep neck abscess in 37 cases[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(2): 180 -181 .
[7] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 200 -203 .
[8] QIAO Yi,NI Guan-sen,CHEN Wen-wen . Effect of H-UPPP and nasal operations on obstructive sleep apnea syndrome in 38 cases
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 206 -208 .
[9] WANG Xiao-feng,LIN Chang,CHENG Jin-mei . Expression of ABAD in inner ears and its clinical significance in different age mice[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 207 -211 .
[10] FAN Qi-jun,HUANG Zhi-wu,MEI Ling,XIAO Bo-kui . Expression of the heat shock protein 27 in rat cochlea induced by sodium salicylate injection by the FQ-PCR technique[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 212 -214 .