Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2022, Vol. 36 ›› Issue (5): 83-87.doi: 10.6040/j.issn.1673-3770.0.2021.147

Previous Articles    

Research progress on the protective mechanism of heat shock protein 72 in glaucoma retinal ganglion cells

ZHAO Ying, ZHANG ShanOverview,XU Jiajun, ZHAO JingruGuidance   

  1. Department of Ophthalmology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
  • Published:2022-09-20

Abstract: Glaucoma is a degenerative optic neuropathy, and is characterized by irreversible and progressive visual impairment. The protection of retinal ganglion cells from further damage of optic nerve has become the focus of glaucoma research. HSP72 is one of the important members of heat shock protein family. It is an inhibitor of apoptosis and has a close relationship with neuroprotection. Studies on the anti-apoptotic and cytoprotective properties of HSP72 in glaucoma retinal ganglion cells have important guiding significance for theoretical research and clinical treatment of the pathogenesis of glaucoma. This article reviews the protective effects of HSP72 in glaucomatous retinal ganglion cells.

Key words: HSP72, Glaucoma, Retinal ganglion cells, Protection mechanism

CLC Number: 

  • R775.9
[1] 傅诗雅,张旭.青光眼动物模型中自噬与视网膜神经节细胞的关系[J].中华实验眼科杂志,2017, 35(2): 180-183. doi:10.3760/cma.j.issn.2095-0160.2017.02.018. FU Shiya, ZHANG Xu. Relationship between autophagy and retinal ganglion cells in animal models of glaucoma[J]. Chinese Journal of Experimental Ophthalmology,2017,35(2):180-183. doi:10.3760/cma.j.issn.2095-0160.2017.02.018.
[2] Park HY, Kim JH, Park CK. Activation of autophagy induces retinal ganglion cell death in a chronic hypertensive Glaucoma model[J]. Cell Death Dis, 2012,3: 290. doi:10.1038/cddis.2012.26.
[3] Chidlow G, Ebneter A, Wood JP, et al. The optic nerve head is the site of axonal transport disruption, axonal cytoskeleton damage and putative axonal regeneration failure in a rat model of glaucoma[J]. Acta Neuropathol, 2011,121(6): 737-751. doi:10.1007/s00401-011-0807-1.
[4] Tezel G, Wax MB. Glial modulation of retinal ganglion cell death inGlaucoma[J]. J Glaucoma, 2003, 12(1): 63-68. doi:10.1097/00061198-200302000-00014.
[5] 马建洲, 贺翔鸽. 免疫系统与青光眼[J]. 国际眼科杂志, 2007, 7(5): 1379-1383. doi:10.3969/j.issn.1672-5123.2007.05.053. MA Jianzhou, HE Xiangge. Immune factors and Glaucoma[J]. Int J Ophthalmol, 2007, 7(5):1379-1383. doi:10.3969/j.issn.1672-5123.2007.05.053.
[6] Chen HH, Cho KS, Vu THK, et al. Author Correction: Commensal microflora-induced T cell responses mediate progressive neurodegeneration in Glaucoma[J]. Nat Commun, 2018, 9(1): 3914. doi:10.1038/s41467-018-06428-2.
[7] Tezel G, Yang JJ, Wax MB. Heat shock proteins, immunity andGlaucoma[J]. Brain Res Bull, 2004, 62(6): 473-480. doi:10.1016/S0361-9230(03)00074-1.
[8] Piri N, Kwong JM, Gu L, et al. Heat shock proteins in the retina: Focus on HSP70 and alpha crystallins in ganglion cell survival[J]. Prog Retin Eye Res, 2016, 52: 22-46. doi:10.1016/j.preteyeres.2016.03.001.
[9] Madeira MH, Ortin-Martinez A, Nadal-Nícolas F, et al. Caffeine administration prevents retinal neuroinflammation and loss of retinal ganglion cells in an animal model of Glaucoma[J]. Sci Rep, 2016, 6: 27532. doi:10.1038/srep27532.
[10] Fortune B, Reynaud J, Hardin C, et al. Experimental Glaucoma causes optic nerve head neural rim tissue compression: a potentially important mechanism of axon injury[J]. Invest Ophthalmol Vis Sci, 2016, 57(10): 4403-4411. doi:10.1167/iovs.16-20000.
[11] Barbe MF, Tytell M, Gower DJ, et al. Hyperthermia protects against light damage in the rat Retina[J]. Science, 1988, 241(4874): 1817-1820.doi:10.1126/science.3175623.
[12] Sato M, Schwartz WH, Selden SC, et al. Mechanical properties of brain tubulin and microtubules[J]. J Cell Biol, 1988, 106(4): 1205-1211.doi:10.1083/jcb.106.4.1205.
[13] Saleh A, Srinivasula SM, Balkir L, et al. Negative regulation of the Apaf-1 apoptosome by Hsp70[J]. Nat Cell Biol, 2000, 2(8): 476-483.doi:10.1038/35019510.
[14] Mosser DD, Caron AW, Bourget L, et al. The chaperone function of hsp70 is required for protection against stress-induced apoptosis[J]. Mol Cell Biol, 2000, 20(19): 7146-7159. doi:10.1128/MCB.20.19.7146-7159.2000.
[15] Ishii Y, Kwong JM, Caprioli J. Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat Glaucoma model[J]. Invest Ophthalmol Vis Sci, 2003, 44(5): 1982-1992.
[16] Nagashima M, Fujikawa C, Mawatari K, et al. HSP70, the earliest-induced gene in the zebrafish Retina during optic nerve regeneration: its role in cell survival[J]. Neurochem Int, 2011, 58(8): 888-895. doi:10.1016/j.neuint.2011.02.017.
[17] Yao SQ, Peng M, Zhu XZ, et al. Heat shock protein72 protects hippocampal neurons from apoptosis induced by chronic psychological stress[J]. Int J Neurosci, 2007, 117(11): 1551-1564. doi:10.1080/00207450701239285.
[18] Carmeli E, Beiker R, Maor M, et al. Increased iNOS, MMP-2, and HSP-72 in skeletal muscle following high-intensity exercise training[J]. J Basic Clin Physiol Pharmacol, 2010, 21(2): 127-146. doi:10.1515/jbcpp.2010.21.2.127.
[19] Van Eden W, Jansen MA, Ludwig I, et al. The enigma of heat shock proteins in immune tolerance[J]. Front Immunol, 2017,8:1599. doi:10.3389/fimmu.2017.01599.
[20] Jin CH, Cleveland JC, Ao LH, et al. Human myocardium releases heat shock protein 27(HSP27)after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor(TLR)-2 and TLR4[J]. Mol Med,2014, 20: 280-289. doi:10.2119/molmed.2014.00058.
[21] Rosenberger K, Dembny P, Derkow K, et al. Intrathecal heat shock protein 60 mediates neurodegeneration and demyelination in the CNS through a TLR4-and MyD88-dependent pathway[J]. Mol Neurodegener, 2015,26(10):5. doi: 10.1186/s13024-015-0003-1.
[22] Swaroop S, Sengupta N, Suryawanshi AR, et al. HSP60 plays a regulatory role in IL-1β-induced microglial inflammation via TLR4-p38 MAPK axis[J]. J Neuroinflammation, 2016, 13(1): 1-19. doi:10.1186/s12974-016-0486-x.
[23] Kwong JMK, Gu L, Nassiri N, et al. AAV-mediated and pharmacological induction of Hsp70 expression stimulates survival of retinal ganglion cells following axonal injury[J]. Gene Ther, 2015, 22(2): 138-145. doi: 10.1038/gt.2014.105.
[24] Li N, Li YH, Duan XC. Heat shock protein 72 confers protection in retinal ganglion cells and lateral geniculate nucleus neurons via blockade of the SAPK/JNK pathway in a chronic ocular-hypertensive rat model[J]. Neural Regen Res, 2014, 9(14): 1395-1401. doi:10.4103/1673-5374.137595.
[25] Park KH, Cozier F, Ong OC, et al. Induction of heat shock protein 72 protects retinal ganglion cells in a rat Glaucoma model[J]. Invest Ophthalmol Vis Sci, 2001, 42(7): 1522-1530.
[26] 张雪, 闫欢欢, 艾华, 等. 热休克蛋白反应对青光眼模型大鼠RGCs中HSP72生成的影响及其作用机制研究[J]. 临床和实验医学杂志, 2020, 19(5): 472-475. doi:10.3969/j.issn.1671-4695.2020.05.007. ZHANG Xue, YAN Huanhuan, AI Hua, et al. Effect of HSP response on HSP72 production in RGCs of Glaucoma model rats and its mechanism[J]. J Clin Exp Med, 2020, 19(5): 472-475. doi:10.3969/j.issn.1671-4695.2020.05.007.
[27] Qing GP, Duan XC, Jiang YQ. Induction of heat shock protein 72 in RGCs of rat acute Glaucoma model after heat stress or zinc administration[J]. Eye Science: A View of Ophthalmology and Visual Science, 2004, 20(1): 30-33,51.
[28] 孔凡女, 李清林. 热休克蛋白72(HSP72)对大鼠青光眼模型视网膜神经节细胞和视神经的保护作用[J]. 眼科新进展, 2019,39(8):737-740. doi:10.13389/j.cnki.rao.2019.0168. KONG Fannv, LI Qinglin. Protective effects of heat shock protein 72(HSP72)on retinal ganglion cells(RGCs)and optic nerve in rat model of Glaucoma[J]. Recent Adv Ophthalmol, 2019,39(8): 737-740. doi:10.13389/j.cnki.rao.2019.0168.
[29] Caprioli J, Ishii Y, Kwong JM. Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat Glaucomamodel[J]. Trans Am Ophthalmol Soc, 2003, 101: 39-50.
[30] 李月花. HSP72对大鼠青光眼模型视网膜神经节细胞和外侧膝状体神经元损伤的保护作用[D]. 长沙:中南大学, 2011.
[31] Windisch BK, LeVatte TL, Archibald ML, et al. Induction of heat shock proteins 27 and 72 in retinal ganglion cells after acute pressure-induced ischaemia[J]. Clin Exp Ophthalmol, 2009, 37(3): 299-307. doi:10.1111/j.1442-9071.2009.02032.x.
[32] Sohn S, Im JE, Kim TE, et al. Effect of heat shock protein 72 expression on etoposide-induced cell death of rat retinal ganglion cells[J]. Korean J Ophthalmol, 2013, 27(1): 48-51. doi:10.3341/kjo.2013.27.1.48.
[33] Jiang SH, Kametani M, Chen DF. Adaptive immunity: new aspects ofpathogenesis underlying neurodegeneration in Glaucoma and opticneuropathy[J]. Front Immunol, 2020, 11: 65. doi:10.3389/fimmu.2020.00065.
[1] TANG Feiran, KONG XiangyunOverview,SHEN JiaquanGuidance. Research progress in the role of OCTA in measuring superficial peripapillary vessel density in the diagnosis and treatment of glaucoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 77-82.
[2] ObjectiveTo discuss the causes and appropriate treatment for iris neovascularization following the analysis of cases( eyes). MethodsIt was a retrospective case series study involving patients( eyes)with iris neovascularization diagnosed between September and July . All the patients underwent ophthalmic examination, and all the examination findings and treatments were recorded. The causes, correlative factors, and treatment outcomes of iris neovascularization were analyzed. ResultsOf the patients, ( eyes, .%)had retinal ischemic signs, including vitreous hemorrhage and retinal vascularization on fundus fluorescein angiography, ( eyes, .%)did not have retinal ischemic signs. After months of treatment, retinal vascularization resolved in all the cases, and iris neovascularization resolved completely in patients( eyes, .%), iris neovascularization was still found in patients( eyes, .%). ConclusionsAnterior segment ischemia may also lead to iris vascularization, although retinal ischemia was the main cause. Additionally, iris neovascularization may not always resolve with treatment for retinal ischemia. Finally, anti-VEGF drug injection was an effective treatment for iris neovascularization.. Case analysis of 25 cases of iris neovascularizationLI Xuan1,2, HUANG Yingxiang2 1. Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; 2. Department of Fundus Disease and Eye Trauma, Eye Hospital China Academy of Chinese Medicine Sciences, Beijing 100040, ChinaAbstract: [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 41-47.
[3] ObjectiveTo discuss the early diagnosis and multidisciplinary diagnosis and treatment of neovascular glaucoma in ocular ischemic syndrome. MethodsThe medical records of a 54-year-old male patient with cerebral infarction who presented with right-eye vision loss that had persisted for a week were reviewed. After slit-lamp examination and fluorescence angiography, he was diagnosed with ocular ischemic syndrome(OIS)complicated by neovascular glaucoma in the right eye and treated with intravitreal injection of anti-VEGF drugs and panretinal photocoagulation. ResultsAfter three months of treatment, the right-eye iris neovascularization subsided, and the intraocular pressure was controlled within normal limits. ConclusionOcular ischemia is often missed or misdiagnosed by ophthalmologists, neurologists, cardiologists, and vascular surgeons due to its insidious onset and complex clinical manifestations. Therefore, the establishment of multidisciplinary diagnosis and treatment can improve the prognosis of OIS patients.. Neovascular glaucoma in ocular ischemic syndrome: a case report and literature reviewQIN Shuqi1, WANG Luping1, JIANG Bin2, WANG Yanling1 1. Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 10050, China; 2. Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 10050, ChinaAbstract: [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 53-55.
[4] Ruibao LIU,Ying ZHAO,Minglu GUO,Yu DUAN,Yanxia WU,Xuejing LU. Autophagy and its research progress in glaucoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(5): 158-161.
[5] LIU Lin, ZHENG Hua, CHEN Shaolin, DUAN Xuanchu. Neuroprotective effects and safety of stem cell transplantation in rats with experimental glaucoma: a systematic review [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 138-144.
[6] TENG Xingbo, CAO Zhi, SUN Haixia, LIU Xianjin, YANGa Weizhou, ZHU Yan, ZHU Yuguang. Role of GRP94 and EIF2α in trabecular bone of primary angle-closure glaucoma patients [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 115-118.
[7] XIE Hongbin, YANG Meina, CHEN Qingshan, LIU Xuyang, FAN Ning. Analysis of immunoglobulin G4-related ophthalmic disease associated with secondary glaucoma [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(2): 99-102.
[8] GAO Xue, HAO Linlin, LIU Shaohua, ZHANG Han. Comparison of two intraocular lens measurement formulas for prediction of postoperative refraction accuracy in patients with angle closure glaucoma and cataract [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(1): 68-71.
[9] XU Xiao. Clinical observations of Ex-PRESS glaucoma filtration device implantation in patients with glaucoma. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 90-93.
[10] . Efficacy and safety of EX-PRESS implanation versus trabeculectomy for open-angle glaucoma: a meta-analysis. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(2): 104-111.
[11] . The aqueous levels of TNF-α and IP-10 in different kinds of glaucoma and their correlation. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(1): 103-106.
[12] YANG Hongling. Research advances on the assessment and influencing factors of glaucoma patients’ quality of life. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(6): 94-97.
[13] LI Dongmei. Influence of long-term use of prostaglandin drugs on meibomian gland function and corneal structure in patients with primary open angle glaucoma. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(3): 89-92.
[14] CHAI Xuerong, ZHANG Shixi, TAO Yu, SHEN Jiaquan. Effect of intravitreal ranibizumab injection combined with trabelectomy and panretinal photocoagulation for neovascular glaucoma [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(3): 72-75.
[15] HAN Ping, XU Jia-feng, HU Kai. Trabeculectomy with scleral reflexed trabecular tissue padding in treatment of glaucoma [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2014, 28(5): 74-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!