Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2022, Vol. 36 ›› Issue (3): 142-146.doi: 10.6040/j.issn.1673-3770.0.2021.584

Previous Articles     Next Articles

Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis

LIU Yitong1,2, ZHOU Suizi1,2Overview,QIU Qianhui2   

  1. 1. The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, Guangdong, China;
    2. Department of Otorhinolaryngology & Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China
  • Published:2022-06-15

Abstract: Chronic rhinosinusitis(CRS)and allergic rhinitis(AR)are common upper airway inflammatory diseases. CRS and AR pathogenesis may be related to the overactivation of inflammasomes containing nucleotide-binding oligomerization domain-like receptor family(NLRs). NLR protein 3(NLRP3)is the most clinically important inflammasome in the NLR family. The reported frequency of NLRP3 has increased in recent years. This review summarizes the influence of NLPR3 on CRS and AR from three aspects: pathogenesis, disease progression, and disease treatment. Our goal is to provide a deeper understanding of the occurrence and development of these diseases and provide references for exploring various therapeutic targets.

Key words: Chronic rhinosinusitis, Allergic rhinitis, NLRP3 inflammasome, Nod-like receptors

CLC Number: 

  • R765.4+1
[1] Sánchez Montalvo A, Gohy S, Rombaux P, et al. The role of IgA in chronic upper airway disease: friend or foe? [J]. Front Allergy, 2022, 3: 852546. doi:10.3389/falgy.2022.852546.
[2] Xiao YC, Xu WN, Su WR. NLRP3 inflammasome: a likely target for the treatment of allergic diseases[J]. Clin Exp Allergy, 2018, 48(9): 1080-1091. doi:10.1111/cea.13190.
[3] Tieu DD, Kern RC, Schleimer RP. Alterations in epithelial barrier function and host defense responses in chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2009, 124(1): 37-42. doi:10.1016/j.jaci.2009.04.045.
[4] Chen MY, Ye XJ, He XH, et al. The signaling pathways regulating NLRP3 inflammasome activation[J]. Inflammation, 2021, 44(4): 1229-1245. doi:10.1007/s10753-021-01439-6.
[5] 孙学华, 金树根, 李曼, 等. 先天免疫模式识别受体与病毒感染的研究进展[J]. 中华传染病杂志, 2012, 30(5): 317-320. doi:10.3760/cma.j.issn.1000-6680.2012.05.019.
[6] 丁烨, 任静宜, 于洪强, 等. 病原相关分子模式和损伤相关分子模式在免疫炎症反应中的作用[J]. 国际口腔医学杂志, 2016, 43(2): 172-176. doi:10.7518/gjkq.2016.02.013. DING Ye, REN Jingyi, YU Hongqiang, et al. Roles of pathogen-associated and damage-associated molecular patterns in immune inflammatory response[J]. International Journal of Stomatology, 2016, 43(2): 172-176. doi:10.7518/gjkq.2016.02.013.
[7] 刘帆, 韩秀珍, 孙妍. Nod样受体蛋白3炎性小体及细胞焦亡在支气管哮喘中的作用[J]. 中华实用儿科临床杂志, 2020, 35(12): 955-957. doi:10.3760/cma.j.cn101070-20200226-00256. LIU Fan, HAN Xiuzhen, SUN Yan. Role of Nod-like receptor pyrin domain 3 inflammasome and pyroptosis in bronchial asthma[J]. Chinese Journal of Applied Clinical Pediatrics, 2020, 35(12): 955-957. doi:10.3760/cma.j.cn101070-20200226-00256.
[8] Heneka MT, McManus RM, Latz E. Inflammasome signalling in brain function and neurodegenerative disease[J]. Nat Rev Neurosci, 2018, 19(10): 610-621. doi:10.1038/s41583-018-0055-7.
[9] Sandall CF, MacDonald JA. Effects of phosphorylation on the NLRP3 inflammasome[J]. Arch Biochem Biophys, 2019, 670: 43-57. doi:10.1016/j.abb.2019.02.020.
[10] Zhang WJ, Chen SJ, Zhou SC, et al. Inflammasomes and fibrosis[J]. Front Immunol, 2021, 12: 643149. doi:10.3389/fimmu.2021.643149.
[11] 张慧珊, 叶乐平. 炎性小体与肺部疾病发生及其干预的研究进展[J]. 中华实用儿科临床杂志, 2019, 34(9): 711-714. doi:10.3760/cma.j.issn.2095-428X.2019.09.018. ZHANG Huishan, YE(Le|Yue)(Ping). Advances in inflammasome and pulmonary disease and its intervention[J]. Chinese Journal of Applied Clinical Pediatrics, 2019, 34(9): 711-714. doi:10.3760/cma.j.issn.2095-428X.2019.09.018.
[12] Liu QY, Zhang DY, Hu DY, et al. The role of mitochondria in NLRP3 inflammasome activation[J]. Mol Immunol, 2018, 103: 115-124. doi:10.1016/j.molimm.2018.09.010.
[13] Wu LY, Ye ZN, Zhou CH, et al. Roles of pannexin-1 channels in inflammatory response through the TLRs/NF-kappa B signaling pathway following experimental subarachnoid hemorrhage in rats[J]. Front Mol Neurosci, 2017, 10: 175. doi:10.3389/fnmol.2017.00175.
[14] Groslambert M, Py BF. Spotlight on the NLRP3 inflammasome pathway[J]. J Inflamm Res, 2018, 11: 359-374. doi:10.2147/JIR.S141220.
[15] Wu XX, Zhang HY, Qi W, et al. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis[J]. Cell Death Dis, 2018, 9(2): 171. doi:10.1038/s41419-017-0257-3.
[16] Wang YF, Shi PL, Chen Q, et al. Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation[J]. J Mol Cell Biol, 2019, 11(12): 1069-1082. doi:10.1093/jmcb/mjz020.
[17] Gaidt MM, Ebert TS, Chauhan D, et al. Human monocytes engage an alternative inflammasome pathway[J]. Immunity, 2016, 44(4): 833-846. doi:10.1016/j.immuni.2016.01.012.
[18] Fokkens W, Desrosiers M, Harvey R, et al. EPOS2020: development strategy and goals for the latest European Position Paper on Rhinosinusitis[J]. Rhinology, 2019, 57(3): 162-168. doi:10.4193/Rhin17.253.
[19] 陈杰, 毛弈友, 陈卓, 等. Ⅱ型炎症在慢性鼻窦炎伴鼻息肉中的作用机制和治疗进展[J]. 中华耳鼻咽喉头颈外科杂志, 2020, 55(10): 993-997. doi:10.3760/cma.j.cn115330-20200813-00671. CHEN Jie, MAO Yiyou, CHEN Zhuo, et al. Research progress on the role of type Ⅱ inflammation in chronic rhinosinusitis with polyps[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2020, 55(10): 993-997. doi:10.3760/cma.j.cn115330-20200813-00671.
[20] 韩佳琦, 苑国庆, 朱宇彤, 等. 慢性鼻窦炎伴鼻息肉患者血清25-(OH)D3和组织中TGF-β1水平及临床意义[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 23-27. doi:10.6040/j.issn.1673-3770.0.2020.536. HAN Jiaqi, YUAN Guoqing, ZHU Yutong, et al. Serum 25-(OH)D3 and tissue TGF-β1 levels in patients with chronic rhino sinusitis with nasal polyps and their clinical significance[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 23-27. doi:10.6040/j.issn.1673-3770.0.2020.536.
[21] Yao Y, Yang CG, Yi X, et al. Comparative analysis of inflammatory signature profiles in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyposis[J]. Biosci Rep, 2020, 40(2): BSR20193101. doi:10.1042/BSR20193101.
[22] Wang Y, Chen S, Wang WW, et al. Role of P2X7R in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyps[J]. Mol Med Rep, 2021, 24(1): 521. doi:10.3892/mmr.2021.12160.
[23] Zhong B, du JT, Liu F, et al. Hypoxia-induced factor-1α induces NLRP3 expression by M1 macrophages in noneosinophilic chronic rhinosinusitis with nasal polyps[J]. Allergy, 2021, 76(2): 582-586. doi:10.1111/all.14571.
[24] Gevaert E, Delemarre T, de Volder J, et al. Charcot-Leyden crystals promote neutrophilic inflammation in patients with nasal polyposis[J]. J Allergy Clin Immunol, 2020, 145(1): 427-430.e4. doi:10.1016/j.jaci.2019.08.027.
[25] 潘立, 刘争. 基于嗜酸粒细胞性炎症的慢性鼻窦炎伴鼻息肉的分类方法[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(3): 222-226. doi:10.3760/cma.j.issn.1673-0860.2019.03.013. PAN Li, LIU Zheng. Classification of chronic rhinosinusitis with nasal polyps based on eosinophilic inflammation[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2019, 54(3): 222-226. doi:10.3760/cma.j.issn.1673-0860.2019.03.013.
[26] 杜志宏, 于亚峰. NLRP3炎性小体在嗜酸粒细胞性鼻息肉发病及复发中的作用[J]. 山东大学耳鼻喉眼学报, 2016, 30(1): 31-35, 39. doi:10.6040/j.issn.1673-3770.0.2015.318. DU Zhihong, YU Yafeng. Effect of NLRP3 inflammasome in the pathogenesis and relapse of eosinophilic nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2016, 30(1): 31-35, 39. doi:10.6040/j.issn.1673-3770.0.2015.318.
[27] 王洪, 马燕春. NLRP1、NLRP3炎性体信号通路在儿童炎症性肠病免疫机制中的作用研究[J]. 中国当代儿科杂志, 2020, 22(8): 854-859. doi:10.7499/j.issn.1008-8830.2003097. WANG Hong, MA Yanchun. Role of NLRP1 and NLRP3 inflammasome signaling pathways in the immune mechanism of inflammatory bowel disease in children[J]. Chinese Journal of Contemporary Pediatrics, 2020, 22(8): 854-859. doi:10.7499/j.issn.1008-8830.2003097.
[28] Wei Y, Zhang J, Wu XM, et al. Activated pyrin domain containing 3(NLRP3)inflammasome in neutrophilic chronic rhinosinusitis with nasal polyps(CRSwNP)[J]. J Allergy Clin Immunol, 2020, 145(3): 1002-1005.e16. doi:10.1016/j.jaci.2020.01.009.
[29] Lee SH, Choi MR, Chung J, et al. Povidone iodine suppresses LPS-induced inflammation by inhibiting TLR4/MyD88 formation in airway epithelial cells[J]. Sci Rep, 2022, 12(1): 3681. doi:10.1038/s41598-022-07803-2.
[30] 中华医学会呼吸病学分会哮喘学组. 上-下气道慢性炎症性疾病联合诊疗与管理专家共识[J]. 中华医学杂志, 2017, 97(26): 2001-2022. doi:10.3760/cma.j.issn.0376-2491.2017.26.001.
[31] Shi QP, Lei ZW, Cheng G, et al. Mitochondrial ROS activate interleukin-1β expression in allergic rhinitis[J]. Oncol Lett, 2018, 16(3): 3193-3200. doi:10.3892/ol.2018.8984.
[32] Wu JH, Wu LZ, Zhang L, et al. Overexpression of miR-224-5p alleviates allergic rhinitis in mice via the TLR4/MyD88/NF-κB pathway[J]. Exp Anim, 2021, 70(4): 440-449. doi:10.1538/expanim.20-0195.
[33] Zhang S, Lin SH, Tang QF, et al. Knockdown of miR2055p alleviates the inflammatory response in allergic rhinitis by targeting Bcell lymphoma 6[J]. Mol Med Rep, 2021, 24(5): 818. doi:10.3892/mmr.2021.12458.
[34] Yu XF, Wang M, Zhao H, et al. Targeting a novel hsa_circ_0000520/miR-556-5p/NLRP3 pathway-mediated cell pyroptosis and inflammation attenuates ovalbumin(OVA)-induced allergic rhinitis(AR)in mice models[J]. Inflamm Res, 2021, 70(6): 719-729. doi:10.1007/s00011-021-01472-z.
[35] Xiao LF, Jiang L, Hu Q, et al. microRNA-133b ameliorates allergic inflammation and symptom in murine model of allergic rhinitis by targeting Nlrp3[J]. Cell Physiol Biochem, 2017, 42(3): 901-912. doi:10.1159/000478645.
[36] Li J, Zhang Y, Zhang L, et al. Fine particulate matter exposure exacerbated nasal mucosal damage in allergic rhinitis mice via NLRP3 mediated pyroptosis[J]. Ecotoxicol Environ Saf, 2021, 228: 112998. doi:10.1016/j.ecoenv.2021.112998.
[37] Yang ZX, Liang CQ, Wang TY, et al. NLRP3 inflammasome activation promotes the development of allergic rhinitis via epithelium pyroptosis[J]. Biochem Biophys Res Commun, 2020, 522(1): 61-67. doi:10.1016/j.bbrc.2019.11.031.
[38] Zhang WT, Ba GY, Tang R, et al. Ameliorative effect of selective NLRP3 inflammasome inhibitor MCC950 in an ovalbumin-induced allergic rhinitis murine model[J]. Int Immunopharmacol, 2020, 83: 106394. doi:10.1016/j.intimp.2020.106394.
[39] Li Y, Ouyang YH, Jiao J, et al. Exposure to environmental black carbon exacerbates nasal epithelial inflammation via the reactive oxygen species(ROS)-nucleotide-binding, oligomerization domain-like receptor family, pyrin domain containing 3(NLRP3)-caspase-1-interleukin 1β(IL-1β)pathway[J]. Int Forum Allergy Rhinol, 2021, 11(4): 773-783. doi:10.1002/alr.22669.
[40] Xu JT, Zhang Q, Li ZX, et al. Astragalus polysaccharides attenuate ovalbumin-induced allergic rhinitis in rats by inhibiting NLRP3 inflammasome activation and NOD2-mediated NF-κB activation[J]. J Med Food, 2021, 24(1): 1-9. doi:10.1089/jmf.2020.4750.
[1] AO Tian,CHENG Lei. An endotype study of chronic rhinosinusitis with nasal polyps and precise control and treatment under the guidance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 7-14.
[2] YAO Shuang,LOU Hongfei. Advances in endotypes and precision medicine in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 20-29.
[3] SHI Shuai, ZHENG Quan,CHENG Lei. Research advances of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 36-42.
[4] WANG Huan, HU Li,YU Hongmeng. Research progress of olfactory dysfunction in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 43-49.
[5] YI Ruonan,CHEN Fuquan. Eosinophils and Olfactory Dysfunction [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 50-55.
[6] GU Yu, WAN Xin,XIAO Zi'an. The interaction between neutrophils and eosinophils in chronic rhinosinusitis and the implications on treatment options [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 56-63.
[7] LIN Hai, ZHU Ying,ZHANG Weitian. The roles of ion channels in the pathogenesis of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 64-70.
[8] QIAO Xinjie,. Research progress on the signal transduction pathway and other factors related to epithelial-mesenchymal transformation in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 71-77.
[9] HUANG Danyi, ZHANG Ting,CHEN Jing, ZHANG Wei. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83.
[10] LI Jiani, ZHU Dongdong,MENG Cuida. The role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 84-91.
[11] CAO Xuan,XIAO Xuping, LI Yunqiu. Advances in the application of hyaluronic acid in chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 104-109.
[12] NI Jingzi, WAN Wenjin,CHENG Lei. Research progress on health-related quality of life in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 110-115.
[13] LIN Yihang,LI Youjin. Research progress on gut microbiome in children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 116-122.
[14] LIU Zhen,SONG Xicheng. Mechanisms and research progress of pyroptosis in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 123-129.
[15] WANG Na,CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHOU Bin,LI Bin . Endoscopic sinus surgery for 75 patients with chronic sinusitis and nasal polyps[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 24 -26 .
[2] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 94 -95 .
[3] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(4): 329 -330 .
[4] ZOU Jun,LU Yi,CHU Ren-yuan . Growth features of human embryonic lens epithelial cells cultured in vitro[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(5): 453 -456 .
[5] XIA Wen-qing,ZHENG Min,MAN Xiao-fei,LI Jian-ping . Manual nucleus fragmentation in senile cataracts [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(5): 467 -469 .
[6] LI Xue-chang,WANG Jin-lei,ZHANG Yu-li,DONG Wen-hui,HAN Zai-wen . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(6): 522 -524 .
[7] KANG Hong-jian,LI Xiao-hong,WANG Bao-an,ZHOU Tao . Emergency tracheotomy for patients with severe head injury[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(3): 234 -236 .
[8] YAN Rui,ZHU Lin-jie . Transplantation of limbal autograft following microsurgery for pterygium[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(3): 243 -244 .
[9] HUANG Fang,ZHU Cong-yue . Expression and significance of p21, p73 and PTEN in multiple primary cancers of the head and neck[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(5): 388 -392 .
[10] XU Hao-jie,LI Xue-zhong,CHEN Cheng-fang,WANG Xue-hai . Effect of intranasal endoscopic dacryocystorhinostomy[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(2): 132 -134 .