Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (3): 111-117.doi: 10.6040/j.issn.1673-3770.0.2022.147

• 综述 • Previous Articles    

Research progress on the relationship between mitochondrial autophagy and squamous cell carcinoma of the head and neck

SUO Anqi1, YANG Xinxin2   

  1. 1. School of Clinical Medical, Jining Medical University, Jining 272007, Shandong, China;
    2. Department of Otorhinolaryngology & Head and Neck Surgery, Affiliated Hospital of Jining Medical University, Jining 272007, Shandong, China
  • Published:2023-05-24

Abstract: Head and neck squamous cell carcinoma(HNSCC)is among the six most common cancers worldwide. Many patients in advanced stages of HNSCC die because of tumor recurrence or resistance to chemotherapy drugs. New treatment strategies are needed to improve the prognosis of HNSCC patients. Mitochondrial autophagy is a selective form of macro autophagy which reduces oxidative stress and prevents cancer by regulating related pathway proteins or drugs, or by promoting the survival of tumor cells under some adverse conditions. Mitochondrial autophagy is the key factor to control the quality of cancer cells which is closely related to the occurrence and development of cancer. Mitochondrial dysfunction promotes cell carcinogenesis, and mitochondrial autophagy dysfunction can induce apoptosis of cancer cells. The discovery and development of new drugs has created new options in targeting mitochondria to treat tumors. Mitochondrial autophagy shows great potential for the prevention and treatment of tumors. This article reviews the regulatory mechanism of mitochondrial autophagy, relationship between mitochondrial autophagy and tumor, and prevention and treatment of HNSCC and clinical drug resistance. The aim of this study is to provide new research directions and targets for the treatment of HNSCC.

Key words: Mitochondrial autophagy, Head and neck squamous cell carcinoma, Oxidative stress, Mitochondrial dysfunction, Regulatory mechanism, Clinical resistance

CLC Number: 

  • R739.9
[1] 胡晨, 薛继尧, 龚洪立, 等. 喉鳞状细胞癌局部复发影响因素及预后分析[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(9): 773-776. doi:10.13201/j.issn.2096-7993.2020.09.002 HU Chen, XUE Jiyao, GONG Hongli, et al. Analysis of correlation factors and prognosis of local recurrence of laryngeal squamous cell carcinoma[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2020, 34(9): 773-776. doi:10.13201/j.issn.2096-7993.2020.09.002
[2] Luo M, Sun G, Sun JW. miR-196b affects the progression and prognosis of human LSCC through targeting PCDH-17[J]. Auris Nasus Larynx, 2019, 46(4): 583-592. doi:10.1016/j.anl.2018.10.020
[3] 王媚, 李志海. 喉癌干细胞:克服多药耐药性的潜在治疗靶点[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 120-128. doi: 10.6040/j.issn.1673-3770.0.2021.388 WANG Mei, LI Zhihai. Laryngeal cancer stem cells: potential therapeutic targets for overcoming multidrug resistance[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 120-128. doi: 10.6040/j.issn.1673-3770.0.2021.388
[4] Liu C, Yu Z, Huang S, et al. Combined identification of three miRNAs in serum as effective diagnostic biomarkers for HNSCC[J]. EBioMedicine, 2019, 50: 135-143. doi:10.1016/j.ebiom.2019.11.016
[5] Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview[J]. Int J Cancer, 2021, 5(149):778-789. doi:10.1002/ijc.33588
[6] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi:10.3322/caac.21660
[7] Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance[J]. Curr Biol, 2018, 28(4): R170-R185. doi:10.1016/j.cub.2018.01.004
[8] Fan P, Xie XH, Chen CH, et al. Molecular regulation mechanisms and interactions between reactive oxygen species and mitophagy[J]. DNA Cell Biol, 2019, 38(1): 10-22. doi:10.1089/dna.2018.4348
[9] Moro L. Mitochondrial dysfunction in aging and cancer[J]. J Clin Med, 2019, 8(11): 1983. doi:10.3390/jcm8111983
[10] 李丹, 李翀, 蒋敬庭. 自噬在肿瘤发生与发展中的调控机制[J]. 临床肿瘤学杂志, 2013, 18(6): 561-564. doi:10.3969/j.issn.1009-0460.2013.06.019 LI Dan, LI Chong, JIANG Jingting. The regulatory mechanism of autophagy in tumorigenesis and development[J]. Chinese Clinical Oncology, 2013, 18(6): 561-564. doi:10.3969/j.issn.1009-0460.2013.06.019
[11] Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective[J]. Cell, 2019, 176(1/2): 11-42. doi:10.1016/j.cell.2018.09.048
[12] Matsuda N, Sato S, Shiba K, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy[J]. J Cell Biol, 2010, 189(2): 211-221. doi:10.1083/jcb.200910140
[13] Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease[J]. Neuron, 2015, 85(2): 257-273. doi:10.1016/j.neuron.2014.12.007
[14] Skoda J, Borankova K, Jansson PJ, et al. Pharmacological targeting of mitochondria in cancer stem cells: an ancient organelle at the crossroad of novel anti-cancer therapies[J]. Pharmacol Res, 2019, 1(139): 298-313. doi:10.1016/j.phrs.2018.11.020
[15] Seirafi M, Kozlov G, Gehring K. Parkin structure and function[J]. FEBS J, 2015, 282(11): 2076-2088. doi:10.1111/febs.13249
[16] Lee JY, Nagano Y, Taylor JP, et al. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy[J]. J Cell Biol, 2010, 189(4): 671-679. doi:10.1083/jcb.201001039
[17] 路云萍, 李玲玉, 景新颖, 等. Prx1调控PINK1/Parkin介导的线粒体自噬在实验性口腔黏膜癌变中的作用[J]. 北京口腔医学, 2021, 29(1): 1-6. LU Yunping, LI Lingyu, JING Xinying, et al. Peroxiredoxin 1 regulates PINK1/parkin-mediated mitophagy in 4NQO-induced oral carcinogenesis[J]. Beijing Journal of Stomatology, 2021, 29(1): 1-6.
[18] Hoshino A, Ariyoshi M, Okawa Y, et al. Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic β-cell function in diabetes[J]. PNAS, 2014, 111(8): 3116-3121. doi:10.1073/pnas.1318951111
[19] 何云凌. 低氧下BNIP3翻译后修饰对线粒体自噬的调控作用[C]. 北京:军事科学院, 2018.
[20] Regula KM, Ens K, Kirshenbaum LA. Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes[J]. Circ Res, 2002, 91(3): 226-231. doi:10.1161/01.res.0000029232.42227.16
[21] Hamacher-Brady A, Brady NR, Logue SE, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy[J]. Cell Death Differ, 2007, 14(1): 146-157. doi:10.1038/sj.cdd.4401936
[22] Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia[J]. J Biol Chem, 2008, 283(16): 10892-10903. doi:10.1074/jbc.M800102200
[23] Bellot G, Garcia-Medina R, Gounon P, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains[J]. Mol Cell Biol, 2009, 29(10): 2570-2581. doi:10.1128/MCB.00166-09
[24] Semenza GL. Hypoxia-inducible factors in physiology and medicine[J]. Cell, 2012, 148(3): 399-408. doi:10.1016/j.cell.2012.01.021
[25] Hanna RA, Quinsay MN, Orogo AM, et al. Microtubule-associated protein 1 light chain 3(LC3)interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy[J]. J Biol Chem, 2012, 287(23): 19094-19104. doi:10.1074/jbc.M111.322933
[26] Novak I, Kirkin V, McEwan DG, et al. Nix is a selective autophagy receptor for mitochondrial clearance[J]. EMBO Rep, 2010, 11(1): 45-51. doi:10.1038/embor.2009.256
[27] Shaid S, Brandts CH, Serve H, et al. Ubiquitination and selective autophagy[J]. Cell Death Differ, 2013, 20(1): 21-30. doi:10.1038/cdd.2012.72
[28] 郭倩, 王蓓. 低氧诱导线粒体自噬的机制及其在相关疾病中的研究进展[J]. 国际呼吸杂志, 2018, 38(8): 610-614. doi:10.3760/cma.j.issn.1673-436X.2018.08.009 GUO Qian, WANG Bei. Mechanisms of hypoxia-induced mitophagy and its advances in related diseases[J]. Int J Respir, 2018, 38(8): 610-614. doi:10.3760/cma.j.issn.1673-436X.2018.08.009
[29] You L, Wang Z, Li H, et al. The role of STAT3 in autophagy[J]. Autophagy, 2015, 11(5): 729-739. doi:10.1080/15548627.2015.1017192
[30] Sun W, Wang B, Qu XL, et al. Metabolism of reactive oxygen species in osteosarcoma and potential treatment applications[J]. Cells, 2019, 9(1): 87. doi:10.3390/cells9010087
[31] 唐笑怡, 张攀, 王凯燕, 等. 线粒体功能与口腔鳞状细胞癌关系的研究进展[J]. 口腔疾病防治, 2022, 30(3): 212-216. doi:10.12016/j.issn.2096-1456.2022.03.009 TANG Xiaoyi, ZHANG Pan, WANG Kaiyan, et al. Research progress on the relationship between mitochondrial function and oral squamous cell carcinoma[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2022, 30(3): 212-216. doi:10.12016/j.issn.2096-1456.2022.03.009
[32] Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene[J]. J Clin Invest, 2003, 112(12): 1809-1820. doi:10.1172/JCI20039
[33] Pirtoli L, Cevenini G, Tini P, et al. The prognostic role of Beclin 1 protein expression in high-grade gliomas[J]. Autophagy, 2009, 5(7): 930-936. doi:10.4161/auto.5.7.9227
[34] Ding ZB, Shi YH, Zhou J, et al. Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma[J]. Cancer Res, 2008, 68(22): 9167-9175. doi:10.1158/0008-5472.CAN-08-1573
[35] Yu M, Gou WF, Zhao S, et al. Beclin 1 expression is an independent prognostic factor for gastric carcinomas[J]. Tumour Biol, 2013, 34(2): 1071-1083. doi:10.1007/s13277-013-0648-8
[36] 黄莉. 自噬相关基因Beclin 1在喉鳞状细胞癌中的表达及意义[D]. 长沙: 中南大学, 2008.
[37] Liu K, Lee J, Kim JY, et al. Mitophagy controls the activities of tumor suppressor p53 to regulate hepatic cancer stem cells[J]. Mol Cell, 2017, 68(2): 281-292.e5. doi:10.1016/j.molcel.2017.09.022
[38] 刘腾飞. MS-275联合顺铂对食管鳞癌的抗肿瘤作用[D]. 郑州: 郑州大学, 2019.
[39] Naik PP, Mukhopadhyay S, Panda PK, et al. Autophagy regulates cisplatin-induced stemness and chemoresistance via the upregulation of CD44, ABCB1 and ADAM17 in oral squamous cell carcinoma[J]. Cell Prolif, 2018, 51(1): e12411. doi:10.1111/cpr.12411
[40] 胡静, 苏荣健, 赵子明, 等. 自噬介导人舌鳞癌细胞对顺铂耐药的作用及其机制研究[J]. 医学与哲学(B), 2015, 36(6): 65-67. HU Jing, SU Rongjian, ZHAO Ziming, et al. The study on the role of human tongue squamous cell cancer cells resistance to cisplatin mediated autophagy and its mechanism[J]. Medicine & Philosophy(B), 2015, 36(6): 65-67.
[41] 金香顺, 王东旭, 尤涛. 抑制自噬可以增加mTOR抑制剂AZD8055引起的喉癌细胞株Hep-2的凋亡[J]. 中国老年学杂志, 2015, 35(14): 3847-3849. doi: 10.3969/j.issn.1005-9202.2015.14.023
[42] 王荣坤, 林简. 3-甲基腺嘌呤增强ALA-PDT对皮肤鳞状细胞癌A431细胞的杀伤作用[J]. 中国皮肤性病学杂志, 2020, 34(6): 627-633. doi:10.13735/j.cjdv.1001-7089.201908164 WANG Rongkun, LIN Jian. 3-methyladenine enhances the killing effect of ALA-PDT on cutaneous squamous cell carcinoma A431 cells[J]. The Chinese Journal of Dermatovenereology, 2020, 34(6): 627-633. doi:10.13735/j.cjdv.1001-7089.201908164
[43] 谢章弘, 华清泉. 铁死亡在头颈部鳞状细胞癌中的研究进展[J]. 肿瘤防治研究, 2022, 49(4): 282-287. doi:10.3971/j.issn.1000-8578.2021.21.1117 XIE Zhanghong, HUA Qingquan. Research progress of ferroptosis in head and neck squamous cell carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(4): 282-287. doi:10.3971/j.issn.1000-8578.2021.21.1117
[1] AI Ziqin, LI Junzheng. Advances in immune vaccines for head and neck squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 143-150.
[2] LI Mengting, HE Shuxi, WANG Hua. Research progress of inflammatory factors in Keratoconus [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 151-158.
[3] SU Jie, YANG Fuyu, LI Meng, CHEN Huiru, JIANG Lisheng, WANG Lixiang. GLP-1 protected the diabetic retinopathy through induction of autophagy in rats [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 30-34.
[4] ZHANG Yi, WANG Wenjun,YANG Anhuai. Research progress of SIRT1 activation by resveratrol in ocular diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 151-156.
[5] WEI Ya'nan,CHEN Xi. Progress in chemotherapy and targeted drug therapy for locally advanced head and neck squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(3): 118-124.
[6] FU Yihao, XU Yixuan,YAN Hong, ZHANG Jie. Recent research advances in the role of glutaredoxin in oculopathy [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(3): 125-130.
[7] ObjectiveThe aim of this study was to provide new perspectives and targets for the treatment of HNSCC by screening differentially expressed genes during cetuximab treatment of head and neck squamous cell carcinoma(HNSCC)using bioinformatics. MethodsThe chip dataset, GSE109756, was downloaded from the GEO database, and the online analysis tool, GEO2R, was used to screen differentially expressed genes in head and neck squamous cell carcinoma tissues treated with and without cetuximab. The DAVID 6.8 and STRING online software were used to analyze the function of the differentially expressed genes, their pathway enrichment, and their protein interactions. Cytoscape was used to visualize and analyze the protein interactions. The online analysis tool, X2K, was used to find the transcription factors, the kinases of differentially expressed genes, and their mutual regulatory relationship with the targeted genes. ResultsNinety-one differentially expressed genes, including 50 up-regulated and 41 down-regulated genes(P<0.05; | logFC | > 1), were found in head and neck squamous cell carcinoma tissues treated with and without cetuximab. The GO and KEGG pathway analyses suggested that these differentially expressed genes were mainly enriched with immunomodulation, extracellular matrix, and other processes. Through the construction of a protein-protein interaction network, we screened CD163, VSIG4, and 3 other core differentially expressed genes(P<0.05), which were up-regulated after cetuximab treatment. In addition, our analysis shows that transcription factors, including SUZ12, TP63, and ESR1, played a key role in cetuximab treatment(P<0.05)and MAPK14, CDK1, and MAPK1 were the most important kinases during the process(P<0.05). ConclusionCD163, VSIG4, and the aforementioned transcription factors and protein kinases may be involved in the biological processes that underlie cetuximab treatment of HNSCC. This study provides new perspectives to facilitate further understanding of the biological mechanism that underlies cetuximab treatment of HNSCC and the exploration of the effectiveness of HNSCC treatment.. Analysis of differentially expressed genes during cetuximab treatment of head and neck squamous cell carcinoma using bioinformaticsYU Kena1, SUN Kaiyue2, ZHANG Jie1, JIN Peng1 1. Department of Otorhinolaryngology & Head and Neck Surgery, The Second Hospital of Shandong University, Jinan 250033, Shandong, China; 2. Shandong Provincial Otorhinolaryngology Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250022, Shandong, ChinaAbstract: [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 117-124.
[8] SONG Fan, HUANG Weijun, XU Huajun, GUAN Jian, YI Hongliang. Relationship between carotid elasticity and oxidative stress in patients with obstructive sleep apnea syndrome [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 99-104.
[9] WU Jing, LIU Yehai. Targeted therapy for head and neck squamous cell carcinoma [J]. J Otolaryngol Ophthalmol Shandong Univ, 2018, 32(5): 97-102.
[10] ZHANG Zhuan, LIU Tao, BAI Zhili, ZHOU Changming. Evolution of oxidative stress in the pathogenesis and treatment of noise-induced hearing loss. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(5): 101-103.
[11] ZHAO Jincheng, SHI Ying, ZHANG Ying, JIA Zhanhong, MA Xin, ZHANG Jingqiu, WU Zaijun, WANG Yu. Expression and methylation patterns of CDH13 in human head and neck squamous carcinoma cells. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 60-63.
[12] . Effects of rosiglitazone on oxidative stress and cognitive function in mice exposed to intermittent hypoxia. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(1): 45-49.
[13] LI Yanzhong. Obesity and obstructive sleep apnea. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(5): 1-4.
[14] LI Langen, WEI Wei, ZHANG Yufeng, Geriletu, YANG Jia, ZHANG Yanmei. The experiment of SIRT1 on against oxidative stress to retinal pigmented epithelium cells [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(6): 56-59.
[15] LIU Hong, WANG Shuai, WANG Hai-bo. Review on mtDNACD4977 and presbyacusis [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2014, 28(4): 95-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!