高阶像差是评价白内障术后视觉质量的重要指标之一,全眼高阶像差主要由角膜和眼内的高阶像差组成。高阶像差中,球差(spherical aberration, SA)是影响视觉质量的主要因素[1]。SA是惟一具备旋转特性的对称性像差,可以被人工晶状体(intraocular lens,IOL)矫正。传统IOL具有正SA,植入后与角膜的正SA相加,全眼SA增加,导致IOL眼成像质量下降。非球面IOL通过表面修饰后将SA消减为负或零,全部或部分抵消角膜的正SA,降低全眼SA,提高术后视觉质量[2]。非球面IOL已在临床上广泛使用,我们采用Topcon KR-1W波前像差仪,测量不同SA设计值的非球面IOL植入后眼内SA,探讨术后全眼SA的可预测性,以期为个性化选择非球面IOL和提高术后视觉质量提供临床依据。
1 资料与方法 1.1 一般资料选取2014年1月至2015年1月就诊于川北医学院附属医院眼科行白内障超声乳化吸出联合IOL植入术的年龄相关性白内障患者112例(160眼),50~90岁,其中男51例(68眼),女性61例(92眼),右眼85眼,左眼75眼。根据患者植入的IOL不同分为4组:AR40组植入AMO Sensor AR40 IOL 26例(40眼)、ZA9003组植入AMO Tecnis ZA9003 IOL 31例(40眼)、IQ组植入Alcon SN60WF IQ IOL 27例(40眼)、AO组植入Bausch & Lomb SofPort AO IOL 28例(40眼)。4组间基本资料(性别、年龄、眼别构成比)比较,差异无统计学意义(P>0.05)。
1.2 纳入和排除纳入标准:行白内障超声乳化吸出联合IOL植入术的年龄相关性白内障患者,认知能力正常,泪膜功能正常。排除标准:有全身系统疾病不能配合检查者;术前角膜散光>1.00D者;有角膜屈光手术史及角膜疾病者;泪膜功能不稳定者;眼部其他疾病,如青光眼、葡萄膜炎、眼外伤、黄斑变性等。
1.3 手术方法采用美国Alcon公司Infiniti Vision System,术前滴倍诺喜眼液3次表面麻醉。常规消毒铺巾,在10:30方位行2.75 mm透明角膜主切口,前房注入Discovisc,连续环形撕囊后水分离,进行核乳化,灌注抽吸(irragation and aspiration,Ⅰ/A)皮质及后囊抛光,IOL植入囊袋内并Ⅰ/A抽吸黏弹剂,妥布霉素地塞米松眼膏涂术眼包扎。
1.4 像差检查采用日本Topcon公司KR-1W波前像差仪,散瞳后在暗室进行,患者瞬目数次后注视目标,检查者于屏幕上迅速调整参考中心与患者注视中心至重合,调整焦距使界面清晰,自动跟踪双眼光学中心扫描3次并获取数据进行分析,得到不同瞳孔直径下角膜、眼内及全眼像差各成分的均方根值(root mean square, RMS)。观察为术后3个月4 mm及6 mm瞳孔直径下的角膜、全眼及眼内总高阶像差(total high order aberration, tHOA)、SA、慧差(coma)、三叶草像差(trefoil)。
1.5 统计学处理采用SPSS 16.0软件,计量资料以x±s表示,各组间裸眼视力(uncorrected visual acuity, UCVA)、最佳矫正视力(best corrected visual acuity, BCVA)比较采用单因素方差分析。各组间tHOA、SA、coma、trefoil比较采用单因素方差分析,两两比较采用LSD-t检验,检验水准α=0.05, P<0.05认为差异有统计学意义。
2 结果 2.1 术后UCVA与BCVA术后3个月,各组间UCVA及BCVA比较,差异无统计学意义,见表 1。
术前各组间患者角膜SA、coma、trefoil及tHOA比较,差异均无统计学意义,见表 2。
术后3个月,4 mm及6 mm瞳孔直径下各组间角膜tHOA、SA、coma及trefoil比较,差异均无统计学意义,见表 3。
术后3个月,4 mm瞳孔直径下各组间眼内SA、coma比较差异有统计学意义,眼内tHOA、trefoil比较差异无统计学意义;6 mm瞳孔直径下各组间眼内tHOA、SA、coma比较,差异有统计学意义,眼内trefoil比较差异无统计学意义,见表 4。
术后3个月,4mm及6mm瞳孔直径下各组间全眼tHOA、SA比较差异有统计学意义,全眼coma、trefoil比较差异无统计学意义,见表 5。
波前像差技术促进了非球面IOL的发展。像差与白内障患者术后出现的光晕、眩光、夜间视力差等症状有重要关系。人眼像差主要由角膜和晶状体叠加产生,而传统IOL具有正SA,植入后与角膜SA叠加从而增加人眼的正SA,影响了患者的视觉质量;非球面IOL旨在降低全眼SA,提高视网膜成像质量。Alcon公司设计SA值为-0.20 μm的非球面IOL,术后保留约+0.10 μm全眼SA,依据是超视力的人群全眼SA值为+0.10 μm[3]。研究[4]表明,术后全眼目标SA值+0.07 μm~+0.10 μm能在主观上获得更好的景深和客观上获得更高的对比敏感度。
研究[5-6]显示,较球面IOL非球面IOL植入后视觉质量更优。Santhiago等[7]发现,5 mm、6 mm瞳孔直径下,Akreos AO非球面IOL植入患者的HOA及SA明显小于Akreos Fit球面IOL植入组,Akreos AO组的对比敏感度优于Akreos Fit组。Ohtani等[8]发现,非球面IOL能显著降低全眼SA及tHOA,且在暗环境下有更好的对比敏感度。Yagci等[9]发现,非球面IOL能显著降低全眼tHOA及SA,术后对比敏感度更高。
人眼角膜SA有一定分布范围,不同个体的角膜SA不相同。部分患者角膜正SA较低甚至为负,近视角膜屈光手术可能使角膜正SA增加[10],远视角膜屈光手术可能使角膜正SA减小[11]。角膜低SA的白内障患者植入较高负SA值IOL,会导致术后全眼较高的负SA,术后视觉质量下降[12]。根据白内障患者术前角膜SA值个性化植入IOL是当前白内障手术的趋势。连慧芳等[13]根据术前测量的患者角膜SA值,植入不同SA值的IOL,术后患者均能获得较满意的目标SA值。Jia等[14]发现,术前测量角膜SA来选择IOL植入的患者更接近术后SA,且暗视状态下对比敏感度更高,有更好的视觉质量。
IOL植入后全眼SA值与预期SA设计值是否一致是实现个性化选择非球面IOL的重要条件。我们研究采用的Topcon KR-1W波前像差仪测量快速,瞬间完成角膜、眼内和全眼的高阶像差的测量,且重复性好[15]。我们的研究表明,AR40组、ZA9003组、IQ组、AO组间UCVA及BCVA无统计学差异。6 mm瞳孔直径下非球面IOL组全眼tHOA及SA明显小于球面IOL组。
较球面IOL非球面IOL能显著降低全眼SA,但与瞳孔大小密切相关。我们发现,4 mm瞳孔直径下Alcon SN60WF IQ非球面IOL能更好地改善SA,6 mm瞳孔直径下Alcon SN60WF IQ非球面IOL与AMO Tecnis ZA9003非球面IOL相当。我们的研究显示,4 mm及6 mm直径下,Tecnis ZA9003 IOL组眼内coma值明显高于其他IOL植入组,可能是与IOL的SA矫正力度有关。Fujikado等[16]认为,IOL较大矫正SA会导致coma增加。三种非球面IOL中,Tecnis ZA9003 IOL的SA设计值最大,Alcon SN60WF次之,SofPort AO最小;术后眼内coma值中Tecnis ZA9003 IOL最大,Alcon SN60WF次之,SofPort AO最小。Denoyer等[17]发现,Tecnis Z9000组具有更高的coma和较低的SA值,这与我们的研究结果一致。我们的研究也显示,瞳孔大小与SA值呈正相关。瞳孔较小的白内障患者植入非球面IOL效果可能不好,因为小瞳孔状态下的SA有限。
综上所述,本研究中4组患者眼内SA值均与IOL的SA设计值相符,因此根据术前测量白内障患者角膜SA合理选择IOL可提高患者视觉质量。
[1] | Schuster AK, Tesarz J, Vossmerbaeumer U. Ocular wavefront analysis of aspheric compared with spherical monofocal intraocular lenses in cataract surgery: Systematic review with metaanalysis[J]. J Cataract Refract Surg, 2015, 41(5): 1088–1097. DOI:10.1016/j.jcrs.2015.04.005 |
[2] | Chang DH, Rocha KM. Intraocular lens optics and aberrations[J]. Current Opinion Ophthalmol, 2016, 27(4): 298–303. DOI:10.1097/ICU.0000000000000279 |
[3] | Levy Y, Segal O, Avni I, et al. Ocular higher-order aberrations in eyes with supernormal vision[J]. Am J Ophthalmol, 2005, 139(2): 225–228. DOI:10.1016/j.ajo.2004.08.035 |
[4] | Nochez Y, Majzoub S, Pisella PJ. Effect of residual ocular spherical aberration on objective and subjective quality of vision in pseudophakiceyes[J]. J Cataract Refract Surg, 2011, 37(6): 1076–1081. DOI:10.1016/j.jcrs.2010.12.056 |
[5] | Schuster A K, Tesarz J, Vossmerbaeumer U. The impact on vision of aspheric to spherical monofocal intraocular lenses in cataract surgery: a systematic review with meta-analysis[J]. Ophthalmol, 2013, 120(11): 2166–2175. DOI:10.1016/j.ophtha.2013.04.011 |
[6] | Tandogan T, Auffarth GU, Choi CY, et al. In vitro comparative optical bench analysis of a spherical and aspheric optic design of the same IOL model[J]. BMC Ophthalmol, 2017, 17(1): 9. DOI:10.1186/s12886-017-0407-5 |
[7] | Santhiago MR, Netto MV, Barreto J Jr, et al. Wavefront analysis, contrast sensitivity, and depth of focus after cataract surgery with aspherical intraocular lens implantation[J]. Am J Ophthalmol, 2010, 149(3): 383–389. DOI:10.1016/j.ajo.2009.09.019 |
[8] | Ohtani S, Miyata K, Samejima T, et al. Intraindividual comparison of aspherical and spherical intraocular lenses of same material and platform[J]. Ophthalmol, 2009, 116(5): 896–901. DOI:10.1016/j.ophtha.2008.11.022 |
[9] | Yagci R, Uzun F, Acer S, et al. Comparison of visual quality between aspheric and spherical IOLs[J]. Eur J Ophthalmol, 2014, 24(5): 688–692. DOI:10.5301/ejo.5000452 |
[10] | Mu oz G, Albarrán-Diego C, Ferrer-Blasco T, et al. Long-term comparison of corneal aberration changes after laser in situ keratomileusis: mechanical microkeratome versus femtosecond laser flap creation[J]. J Cataract Refract Surg, 2010, 36(11): 1934–1944. DOI:10.1016/j.jcrs.2010.06.062 |
[11] | Keir NJ, Simpson T, Hutchings N, et al. Outcomes of wavefront-guided laser in situ keratomileusis for hyperopia[J]. J Cataract Refract Surg, 2011, 37(5): 886–893. DOI:10.1016/j.jcrs.2010.12.039 |
[12] |
王静, 张劲松, 赵江月.
角膜球面像差引导下个体化IOL植入术后视觉质量[J]. 中华眼视光学与视觉科学杂志, 2012, 14(10): 617–621.
WANG Jing, ZHANG Jinsong, ZHAO Jiangyue. Evaluation of the optical quality of corneal spherical aberration-guided customized intraocular lens implants[J]. Chin J Optometry Ophthalmol Visual Sci, 2012, 14(10): 617–621. DOI:10.3760/cma.j.issn.1674-845X.2012.10.011 |
[13] |
连慧芳, 汤欣, 宋慧, 等.
超声乳化白内障吸除术前角膜球差对相对个性化非球面人工晶状体植入的影响[J]. 中华眼科杂志, 2010, 46(5): 410–414.
LIAN Huifang, TANG Xin, SONG Hui, et al. The influence of preoperative corneal spherical aberration on relatively personalized implantation of aspheric intraocular lens[J]. Chin J Ophthalmol, 2010, 46(5): 410–414. |
[14] | Jia LX, Li ZH. Clinical study of customized aspherical intraocular lens implants[J]. Int J Ophthalmol, 2014, 7(5): 816–821. |
[15] |
邢晓杰, 汤欣, 宋慧.
KR-1W波前像差仪测量人工晶状体眼像差可重复性研究[J]. 中国实用眼科杂志, 2011, 29(11): 1127–1130.
XING Xiaojie, TANG Xin, SONG Hui. Intrasubject repeatability of internal aberrometry obtained with KR-1W integrated aberrometer[J]. Chin J Pract Ophthalmol, 2011, 29(11): 1127–1130. DOI:10.3760/cma.j.issn.1006-4443.2011.11.007 |
[16] | Fujikado T, Saika M. Evaluation of actual retinal images produced by misaligned aspheric intraocular lenses in a model eye[J]. Clin Ophthalmol, 2014, 28(8): 2415–2423. |
[17] | Denoyer A, Denoyer L, Halfon J, et al. Comparative study of aspheric intraocular lenses with negative spherical aberration or no aberration[J]. J Cataract Refract Surg, 2009, 35(3): 496–503. DOI:10.1016/j.jcrs.2008.11.032 |