山东大学耳鼻喉眼学报  2017, Vol. 31 Issue (4): 36-39  DOI: 10.6040/j.issn.1673-3770.1.2017.025
0

引用本文 

冀帅飞, 张婕, 严宏. 年龄相关性黄斑变性患者人工晶状体的选择[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 36-39.DOI: 10.6040/j.issn.1673-3770.1.2017.025.
JI Shuaifei, ZHANG Jie, YAN Hong. Selection of intraocular lens for patients with age-related macular degeneration[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017, 31(4): 36-39. DOI: 10.6040/j.issn.1673-3770.1.2017.025.

通讯作者

严宏。E-mail:yhongb@fmmu.edu.cn

文章历史

收稿日期:2017-07-07
网络出版时间:2017-07-25 07:04
年龄相关性黄斑变性患者人工晶状体的选择
冀帅飞1, 张婕1, 严宏1,2     
1. 第四军医大学唐都医院眼科,陕西 西安 710038;
2. 重庆医科大学附属第一医院眼科/眼科学重庆市重点实验室/重庆市眼科研究所,重庆 400016
收稿日期:2017-07-07;网络出版时间:2017-07-25 07:04
通讯作者:严宏。E-mail:yhongb@fmmu.edu.cn
摘要:年龄相关性黄斑变性(AMD)是引起65岁以上人群视力严重损伤的重要原因。白内障和AMD两者常同时存在于老年人群,合并AMD的白内障患者人工晶状体的选择仍然存在争议。就近年来人工晶状体在AMD患者中的应用情况做一总结。
关键词年龄相关性黄斑变性    白内障    人工晶状体    
Selection of intraocular lens for patients with age-related macular degeneration
JI Shuaifei1, ZHANG Jie1, YAN Hong1,2     
1. Department of Ophthalmonogy, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, Shaanxi, China;
2. The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing 400016, China
Abstract: Age-related macular degeneration (AMD) is a major problem, and is the leading cause of visual impairment in individuals aged above 65 years. Cataract and AMD often coexist in the elderly, and selection of intraocular lens for patients with both cataract and AMD is still controversial. This review summarizes the application of intraocular lens for patients with AMD in recent years.
Key words: Age-related macular degeneration    Cataract    Intraocular lens    
1 白内障与年龄相关性黄斑变性

年龄相关性白内障(age-related cataract, ARC)是致盲的首要原因[1-2], 多发于60岁以上人群,是老年人群最常见的眼部疾病。随着白内障手术的完善,白内障的复明和屈光治疗效果都非常显著。年龄相关性黄斑变性是65岁以上人群视力严重受损的重要原因,也是导致严重的、不可逆性视力损伤的重要原因[3]。全球有约2.85亿人群视力障碍,0.39亿致盲人群中白内障患者占总盲人数的51%,年龄相关性黄斑变性(age-related macular degeneration,AMD)占5%[4]。上述两种致盲性眼病均与年龄相关,但两者的发病机制、转归和治疗效果却大不相同。

目前,美国40岁以上人群的AMD患病率约为9.2%,而其中有175万的患者每年进行超过160万台白内障手术[5]。国内研究发现[6],白内障与AMD是致盲性眼病的主要原因。随着人口的老龄化,白内障合并AMD的患者将会越来越多[4]

近年来,人工晶状体的应用快速进展,满足不同患者需求的多种人工晶状体类型相继出现。白内障术后植入合适的人工晶状体对于AMD患者视觉功能的恢复尤为重要。

2 AMD患者人工晶状体的选择 2.1 单焦点人工晶状体、散光人工晶状体和可调节人工晶状体

单焦点人工晶状体、散光人工晶状体和可调节人工晶状体影响对比敏感度的效果尚不清楚。单焦点人工晶状体焦点单一固定,术后患者可能需要戴镜矫正近视力。散光人工晶状体主要适用于矫正角膜散光的患者。可调节性人工晶状体可以随着睫状体收缩来进行调节,在中近视力的恢复上优于单焦点人工晶状体[7]。研究发现[8],植入可调节人工晶状体后,合并地图萎缩性AMD白内障患者近视力改善,且没有影响远视力。

2.2 非球面人工晶状体

非球面人工晶状体可以减轻球面相差,以获得良好的视网膜图像,与球面人工晶状体相比具有更低的眩光敏感度[9]。多中心随机实验发现,合并AMD白内障患者术后植入非球面人工晶状体较植入传统晶状体,对比敏感度在明视和中间视觉条件下均明显提高[10]。单纯白内障术后植入非球面人工晶状体,在几乎所有照明和空间频率条件下,对比度的提高与球面相差的下调均优于单焦点人工晶状体[11]

2.3 多焦点人工晶状体

多焦点人工晶状体将光线分为多个焦点,在多个距离上进行调节矫正,术后患者拥有良好的远、近距离裸眼视力。研究表明,伪调节方式可能会降低对比敏感度,可能不适用于AMD患者[12-14]。研究发现,在自动视野检查中,植入多焦点人工晶状体的患者较植入单焦点人工晶状体患者平均偏差值明显下调,而AMD的患者对这种情况可能不耐受[15]。然而,AMD患者植入多焦点人工晶状体后的屈光度增加,随访6个月客观视力和主观生活质量提高[14]

2.4 蓝光滤过型人工晶状体

蓝光对人视觉功能的影响具有两面性,人天然晶状体可以一定程度上滤过吸收蓝光[16]。急性蓝光暴露对视网膜有毒性,可以加速AMD发展[17],植入蓝光滤过型人工晶状体有益于AMD患者。研究表明,植入蓝光滤过型人工晶状体较未植入人工晶状体可减少50%的蓝光吸收和提高视网膜色素上皮细胞存活率[18]。蓝光滤过人工晶状体较单纯紫外滤过人工晶状体更具保护作用[19]。研究发现,蓝光滤过人工晶状体较紫外滤过人工晶状体地图样萎缩的AMD患者发展程度更小[20]

蓝光有利于暗视觉的形成[21],可以抑制褪黑素的释放进而调节昼夜节律[22],蓝光滤过人工晶状体可能影响暗视觉、对比敏感度和睡眠苏醒周期。通过分光光度计测定不同人工晶体的光谱透过率发现,蓝光滤过人工晶状体较紫外滤过人工晶状体暗视觉敏感度和褪黑素抑制率分别下调14%~21%和27%~38%[23]。暗视觉主要由视杆细胞介导,但随着年龄增长视杆细胞的数量和敏感度逐渐降低[24],蓝光滤过人工晶状体可能会使老年人夜视力受损。研究表明,白内障患者术后植入蓝光滤过人工晶状体较紫外滤过人工晶状体对比敏感度和蓝/黄中央凹阈值降低[25]。研究也发现,蓝光滤过人工晶状体较透明人工晶体光度对比度更低[26]

临床研究表明,蓝光滤过人工晶状体与透明人工晶状体,在视力、对比敏感度和眩光方面没有显著差异[27-29]。蓝光滤过人工晶状体对AMD患者的影响还需进一步研究。

2.5 特殊人工晶状体 2.5.1 可植入性微型望远镜(implantable miniature telescope,IMT)

IMT焦点固定,由两个连续性载波装置构成, 包裹在囊袋中的可伸缩光学设备。IMT长4.4 mm,直径3.3 mm,专为单眼使用,整体屈光力可以产生中央视野放大的视网膜图像[30]。IMT有2.2×和3×放大倍数模型,2010年FDA批准上市[31]。IMT已应用于晚期AMD患者[32-34]

2.5.2 沙里奥特黄斑晶体(scharioth macular lens,SML)

SML是一种由疏水性和亲水性丙烯酸酯组成的共聚物,具有放大效应的新型可伸缩性附加人工晶状体。中央直径1.5 mm,屈光度+10,放大倍数2×的非球面镜片,可以在不影响远视力或视野的条件下改善近视力。植入SML可改善AMD患者近视力[35]

2.5.3 OriLens (optolight vision technology)

OriLens是一种包含嵌入式微型镜片的可取代已存在人工晶状体的沟固定晶体,可产生2.5×放大效应,可改善AMD患者视力[36-37]。OriLens位于眼后房,远离角膜时不影响内皮细胞密度,且新生血管性AMD患者进一步治疗时也可安全取出[36],可提高2.5~4行的视力[37]

2.5.4 IOL-VIP system (Soleko)

IOL-VIP是由包裹在囊袋内高负功率双凹人工晶体和高增功率双凸人工晶状体组成,总长度13 mm,可产生1.3×放大倍数,主要放置在前房。研究表明,非新生血管性AMD患者及非渗出性AMD患者植入IOL-VIP后视力得到改善且耐受良好[38-39]

2.5.5 利普希茨黄斑植入晶体(lipshitz macular implant,LMI)

LMI直径13 mm,放大倍数2.5×,由两个配置在卡塞格林望远镜微型镜片组成,其反射表面涂有钛氧化物和产生镜像效应的二氧化硅。LMI不限制眼底视野,可进行血管造影和氩激光[40]。研究发现,稳定型AMD患者植入LMI后,视力改善,平均内皮细胞密度下调,患者生活质量提高[41]

2.5.6 超微植入性晶体(iol advanced micro devices, iolAMD)

iolAMD由两个配置在伽利略望远镜中的人工晶状体组成,分别为囊袋中的高负人工晶体和睫状沟的高增人工晶体,放大倍数为1.3×[42]。研究表明,非渗出性AMD患者植入iolAMD后平均最佳矫正远近视力提高,平均内皮细胞下调[43-44]

3 总结

随着人口的老龄化,合并AMD的白内障患者不断增加。白内障超声乳化手术切口小、手术时间短、手术创伤小。随着人工晶状体材料和功能的不断革新,AMD患者人工晶状体的选择空间逐渐增加。蓝光滤过人工晶状体是否有益于AMD患者还存在争议,而且缺乏各类人工晶状体对AMD患者的影响研究。AMD患者人工晶状体的选择还需大量的研究验证。

参考文献
[1] American Academy of Ophthalmology. American academy of ophthalmology cataract and anterior segment panel cataract in the adult eye[R]. San Francisco: AAO, 2011.
[2] 刘虎, 赵家良, 陆宏, 等. 我国九省眼病调查中北京市顺义区50岁及以上人群盲和中、重度视力损伤患病率调查[J]. 中华眼科杂志, 2012, 48(3): 199–204.
LIU Hu, ZHAO Jialiang, LU Hong, et al. Prevalence of blindness and moderate and severe visual impairment among adults aged 50 years or above in the Shunyi District of Beijing: the china nine-province survey[J]. Chin J Ophthalmol, 2012, 48(3): 199–204.
[3] Sayen A, Hubert I, Berrod JP. Age related macular degeneration[J]. Rev Prat, 2011, 61(2): 159–164.
[4] World Health Organization. Global data on visual impairments 2010.[DB/OL]
[5] Qian CX, Young LH. The impact of cataract surgery on AMD development and progression[J]. Semin Ophthalmol, 2014, 29(5-6): 301–311. DOI:10.3109/08820538.2014.962166
[6] 马晓芸, 吴建华, 卢慧敏, 等. 上海市卢湾区社区老年人盲与低视力流行病学调查[J]. 中华疾病控制杂志, 2012, 16(8): 658–660.
MA Xiaoyun, WU Jianhua, LU Huimin, et al. An epidemiological investigation of blindness and vision impairment in older adults of Luwan District, Shanghai[J]. Chin J Dis Contr Prev, 2012, 16(8): 658–660.
[7] Ong HS, Evans JR, Allan BD. Accommodative intraocular lens versus standard monofocal intraocular lens implantation in cataract surgery[J]. Coch Dat Syst Rev, 2014, 5(5): 367–371.
[8] Alió JL, Ben-nun J. Visual and accommodative outcomes 1 year after implantation of an accommodating intraocular lens based on a new concept[J]. J Cataract Refract Surg, 2009, 35(10): 1671–1678. DOI:10.1016/j.jcrs.2009.04.043
[9] Shentu X, Tang X, Yao K. Spherical aberration, visual performance and pseudo accommodation of eyes implanted with different aspheric intraocular lens[J]. Clin Exp Ophthalmol, 2008, 36(7): 620–624. DOI:10.1111/ceo.2008.36.issue-7
[10] Bellucci R, Scialdone A, Buratto L, et al. Visual acuity and contrast sensitivity comparison between Tecnis and AcrySof SA60AT intraocular lenses: a multicenter randomized study[J]. J Cataract Refract Surg, 2005, 31(4): 712–717. DOI:10.1016/j.jcrs.2004.08.049
[11] Mester U, Kaymak H. Comparison of the AcrySof IQ aspheric blue light filter and the AcrySof SA60AT intraocular lenses[J]. J Refract Surg, 2008, 24(8): 817–825.
[12] de Vries NE, Nuijts RM. Multifocal intraocular lenses in cataract surgery: literature review of benefits and side effects[J]. J Cataract Refract Surg, 2013, 39(2): 268–278. DOI:10.1016/j.jcrs.2012.12.002
[13] Zeng M, Liu Y, Liu X, et al. Aberration and contrast sensitivity comparison of aspherical and monofocal and multifocal intraocular lens eyes[J]. Clin Exp Ophthalmol, 2007, 35(4): 355–360. DOI:10.1111/ceo.2007.35.issue-4
[14] Gayton JL, Mackool RJ, Ernest PH, et al. Implantation of multifocal intraocular lenses using a magnification strategy in cataractous eyes with age-related macular degeneration[J]. J Cataract Refract Surg, 2012, 38(3): 415–418. DOI:10.1016/j.jcrs.2011.12.022
[15] Ho CH. Reduction in mean deviation values in automated perimetry in eyes with multifocal compared to monofocal intraocular lens implants[J]. Am J Ophthalmol, 2014, 158(2): 227. DOI:10.1016/j.ajo.2014.04.017
[16] Kessel L, Lundeman JH, Herbst K, et al. Age-related changes in the transmission properties of the human lens and their relevance to circadian entrainment[J]. J Cataract Refract Surg, 2010, 36(2): 308–312. DOI:10.1016/j.jcrs.2009.08.035
[17] Algvere PV, Marshall J, Seregard S. Age-related maculopathy and the impact of blue light hazard[J]. Acta Ophthalmologica, 2006, 84(1): 4. DOI:10.1111/j.1600-0420.2005.00627.x
[18] Stock MV, Vollman DE, Baze EF, et al. Functional visual improvement after cataract surgery in eyes with age-related macular degeneration: results of the ophthalmic surgical outcomes data (OSOD) project[J]. Invest Ophthalmol Vis Sci, 2015, 56(4): 2536–2540. DOI:10.1167/iovs.14-16069
[19] Marcus Kernt MD, Walch A, Neubauer AS, et al. Filtering blue light reduces light-induced oxidative stress, senescence and accumulation of extracellular matrix proteins in human retinal pigment epithelium cells[J]. Clin Exper Ophthalmol, 2012, 40(1): e87. DOI:10.1111/j.1442-9071.2011.02620.x
[20] Pipis A, Touliou E, Pillunat LE, et al. Effect of the blue filter intraocular lens on the progression of geographic atrophy[J]. Eur J Ophthalmol, 2014, 25(2): 128–133.
[21] Aarnisalo EA. Effects of yellow filter glasses on the results of photopic and scotopic photometry[J]. Am J Ophthalmol, 1988, 105(4): 408–411. DOI:10.1016/0002-9394(88)90307-8
[22] Cajochen C, Münch M, Kobialka S, et al. High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light[J]. J Clin Endoc Metab, 2005, 90(3): 1311–1316. DOI:10.1210/jc.2004-0957
[23] Mainster MA. Violet and blue light blocking intraocular lenses: photoprotection versus photoreception[J]. Br J of Ophthalmol, 2006, 90(6): 784. DOI:10.1136/bjo.2005.086553
[24] Jackson G, Owsley C. Scotopic sensitivity during adulthood[J]. Vision Res, 2000, 40(18): 2467–2473. DOI:10.1016/S0042-6989(00)00108-5
[25] Wirtitsch MG, Schmidinger G, Prskavec M, et al. Influence of blue-light-filtering intraocular lenses on color perception and contrast acuity[J]. Ophthalmology, 2009, 116(1): 39–45. DOI:10.1016/j.ophtha.2008.08.035
[26] Pierre A, Wittich WJ, Overbury O. Luminance contrast with clear and yellow-tinted intraocular lenses[J]. J Cataract Refract Surg, 2007, 33(7): 1248–1252. DOI:10.1016/j.jcrs.2007.03.024
[27] Hayashi K, Hayashi H. Visual function in patients with yellow tinted intraocular lenses compared with vision in patients with non-tinted intraocular lenses[J]. Br J Ophthalmol, 2006, 90(8): 1019–1023. DOI:10.1136/bjo.2006.090712
[28] Kaiserman I, Kaiserman N, Elhayany A, et al. Cataract surgery is associated with a higher rate of photodynamic therapy for age-related macular degeneration[J]. Ophthalmology, 2007, 114(2): 278–282. DOI:10.1016/j.ophtha.2006.10.019
[29] Lavric A, Pompe MT. Do blue-light filtering intraocular lenses affect visual function[J]. Optom Vis Sci, 2014, 91(11): 1348–1354. DOI:10.1097/OPX.0000000000000390
[30] Hudson HL, Lane SS, Heier JS, et al. Implantable miniature telescope for the treatment of visual acuity loss resulting from end-stage age-related macular degeneration: 1-year results[J]. Ophthalmology, 2006, 113(11): 1987. DOI:10.1016/j.ophtha.2006.07.010
[31] Geller J. FDA Approves Implantable Miniature Telescope[J]. J Clin Eng, 2010, 35(4): 166–168. DOI:10.1097/JCE.0b013e3181f597e2
[32] Lane SS, Kuppermann BD, Fine IH, et al. A prospective multicenter clinical trial to evaluate the safety and effectiveness of the implantable miniature telescope[J]. Am J Ophthalmol, 2005, 139(2): 395–396. DOI:10.1016/j.ajo.2004.09.026
[33] Hudson HL, Stulting RD, Heier JS, et al. Implantable telescope for end-stage age-related macular degeneration: long-term visual acuity and safety outcomes[J]. Am J Ophthalmol, 2008, 146(5): 664–673. DOI:10.1016/j.ajo.2008.07.003
[34] Boyer D, Freund KB, Regillo C, et al. Long-term (60-month) results for the implantable miniature telescope: efficacy and safety outcomes stratified by age in patients with end-stage age-related macular degeneration[J]. Clin Ophthalmol, 2015, 9: 1099.
[35] Nekolova J, Rozsival P, Sin M, et al. Scharioth macula lens: a new intraocular implant for low-vision patientswith stabilizedmaculopathy-first experience[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2017, 161(2): 206–209. DOI:10.5507/bp.2017.014
[36] Lipshitz I. Intraocular telescopic implants for age-relatedmacular degeneration eyes[J]. Eur Ophthalmic Rev, 2015, 9(2): 159–160. DOI:10.17925/EOR.2015.09.02.159
[37] Teh BL, Megaw R, Borooah S, et al. Optimizing cataract surgery in patients with age-related macular degeneration[J]. Surv Ophthalmol, 2017, 62(3): 346–356. DOI:10.1016/j.survophthal.2016.12.003
[38] Orzalesi N, Pierrottet CO, Zenoni S, et al. The IOL-vip system: a double intraocular lens implant for visual rehabilitation of patients with macular disease[J]. Ophthalmology, 2007, 114(5): 860–865. DOI:10.1016/j.ophtha.2007.01.005
[39] Amselem L, Diazllopis M, Felipe A, et al. Clinical magnification and residual refraction after implantation of a double intraocular lens system in patients with macular degeneration[J]. J Cataract Refract Surg, 2008, 34(9): 1571–1577. DOI:10.1016/j.jcrs.2008.05.032
[40] Kent C. Mirror, Mirror: A New IOL for AMD.[2008] .http://www.reviewofophthalmology.com/article/mirror-mirror-a-new-iol-for-amd.
[41] Agarwal A, Lipshitz I, Jacob S, et al. Mirror telescopic intraocular lens for age-related macular degeneration-Design and preliminary clinical results of the Lipshitz macular implant[J]. J Cataract Refract Surg, 2008, 34(1): 87–94. DOI:10.1016/j.jcrs.2007.08.031
[42] Tabernero J, Qureshi MA, Robbie SJ, et al. An aspheric intraocular telescope for age-related macular degeneration patients[J]. Biomed Opt Express, 2015, 6(3): 1010–1020. DOI:10.1364/BOE.6.001010
[43] Qureshi MA, Robbie SJ, Tabernero J, et al. Injectable intraocular telescope: pilot study[J]. J Cataract Refract Surg, 2015, 41(10): 2125. DOI:10.1016/j.jcrs.2015.03.021
[44] Hengerer FH, Artal P, Kohnen T, et al. Initial clinical results of a new telescopic IOL implanted in patients with dry age-related macular degeneration[J]. J Refract Surg, 2015, 31(3): 158–162. DOI:10.3928/1081597X-20150220-03