Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2024, Vol. 38 ›› Issue (2): 128-136.doi: 10.6040/j.issn.1673-3770.0.2023.270

• Review • Previous Articles     Next Articles

Application and progress of three-dimensional-printing technology in rhinology

CHENG Xiqiao1,2, QU Shenhong2   

  1. 1. Graduate School of Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China2. Department of Otorhinolaryngology & Head and Neck Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
  • Online:2024-03-20 Published:2024-03-29

Abstract: Three-dimensional(3D)-printing technology is based on a digital model and 3D-printed structures from powdered metal or other materials printed layer by layer. The application of 3D-printing-technology in the medical field, combined with advanced imaging technology and artificial intelligence, facilitates clinical teaching, preoperative planning, and doctor-patient communication, and enhances tissue and organ repair and reconstruction. The nasal anatomy is fine, the adjacent structure is complex, the individual differences are evident, and the operation is difficult. With the improvement of quality of life, the demand for defect repair caused by rhinoplasty and other diseases have increased gradually, and conventional surgery cannot fully satisfy various needs. The combination of 3D-printing and various technologies is consistent with this trend and has become a hot topic in rhinology and other disciplines in recent years. Therefore, this review summarizes the 3D-printing technology methods in this research direction, and presents recent progress in rhinology in nasal reconstruction and plastic surgery, 3D-printing nasal bones, postoperative tissue reconstruction, improvement of nasal ventilation function, assisted surgery, teaching and anatomical training, and drug delivery. Furthermore, future research directions and prospects for practical applications are highlighted.

Key words: Three-dimensional printing technology, Rhinology, Three-dimensional printed bracket, Chondrocytes

CLC Number: 

  • R765
[1] Hsieh TY, Cervenka B, Dedhia R, et al. Assessment of a patient-specific, 3-dimensionally printed endoscopic sinus and skull base surgical model[J]. JAMA Otolaryngol Head Neck Surg, 2018, 144(7): 574-579. doi:10.1001/jamaoto.2018.0473
[2] 顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5): 24-47 GU Dongdong, ZHANG Hongmei, CHEN Hongyu, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47(5): 24-47
[3] Choudhury D, Anand S, Naing MW. The arrival of commercial bioprinters-Towards 3D bioprinting revolution![J]. Int J Bioprint, 2018, 4(2): 139. doi:10.18063/IJB.v4i2.139
[4] Ka carevi cZP, Rider PM, Alkildani S, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects[J]. Materials, 2018, 11(11): 2199. doi:10.3390/ma11112199
[5] Suarez-Martinez AD, Sole-Gras M, Dykes SS, et al. Bioprinting on live tissue for investigating cancer cell dynamics[J]. Tissue Eng Part A, 2021, 27(7/8): 438-453. doi:10.1089/ten.TEA.2020.0190
[6] K Handral H, Tay SH, Weng WC, et al. 3D Printing of cultured meat products[J]. Crit Rev Food Sci Nutr, 2022, 62(1): 272-281. doi:10.1080/10408398.2020.1815172
[7] 贺超良, 汤朝晖, 田华雨, 等. 3D打印技术制备生物医用高分子材料的研究进展[J]. 高分子学报, 2013(6): 722-732 HE Chaoliang, TANG Huitang, TIAN Huayu, et al. Progress in the development of biomedical polymer materials fabricated by 3-dimensional printing technology[J]. Acta Polymerica Sinica, 2013(6): 722-732
[8] 王艳杰, 程冯丽, 赵长青. 3D打印技术应用于耳鼻咽喉科临床前瞻创新[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 114-118. doi: 10.6040/j.issn.1673-3770.0.2019.538 WANG YanJie, CHENG Fengli, ZHAO Changqing. Latest research progress of 3D printing technology and clinical applications in otorhinolaryngology[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 114-118. doi: 10.6040/j.issn.1673-3770.0.2019.538
[9] 罗慧娉, 方锐, 蒋家琪. 3D打印支气管模型用于硬支气管镜检查的模拟训练[J]. 中国眼耳鼻喉科杂志, 2020, 20(3): 230-232. doi:10.14166/j.issn.1671-2420.2020.03.024 LUO Huiping, FANG Rui, JIANG Jiaqi. Rigid bronchoscopy training with a 3D printed bronchial model[J]. Chinese Journal of Ophthalmology and Otorhinolaryngology, 2020, 20(3): 230-232. doi:10.14166/j.issn.1671-2420.2020.03.024
[10] Chytas D, Piagkou M, Johnson EO. Can three-dimensional visualization technologies be more effective than cadavers for dental anatomy education?[J]. Anat Sci Educ, 2020, 13(5): 664-665. doi:10.1002/ase.1953
[11] Khorsandi D, Fahimipour A, Abasian P, et al. 3D and 4D printing in dentistry and maxillofacial surgery: printing techniques, materials, and applications[J]. Acta Biomater, 2021, 122: 26-49. doi:10.1016/j.actbio.2020.12.044
[12] Zhu YF, Zhou YM, Zhao QN, et al. 3D technique-based nonsurgical correction of deformational congenital auricular deformities[J]. ORL J Otorhinolaryngol Relat Spec, 2021, 83(2): 59-64. doi:10.1159/000509493
[13] 李腾海, 杨田野, 彭维海. 3D打印耳廓模型在耳廓再造软骨支架雕刻成形中的应用[J]. 吉林大学学报(医学版), 2023, 49(3): 770-776. doi:10.13481/j.1671-587X.20230328 LI Tenghai, YANG Tianye, PENG Weihai. Application of 3D printing auricular model in carving and shaping of cartilage scaffold in auricle reconstruction[J]. Journal of Jilin University(Medicine Edition), 2023, 49(3): 770-776. doi:10.13481/j.1671-587X.20230328
[14] Holländer J, Genina N, Jukarainen H, et al. Three-dimensional printed PCL-based implantable prototypes of medical devices for controlled drug delivery[J]. J Pharm Sci, 2016, 105(9): 2665-2676. doi:10.1016/j.xphs.2015.12.012
[15] Melocchi A, Parietti F, Maroni A, et al. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling[J]. Int J Pharm, 2016, 509(1/2): 255-263. doi:10.1016/j.ijpharm.2016.05.036
[16] Landaeta FJ, Shiozawa JN, Erdman A, et al. Low cost 3D printed clamps for external fixator for developing countries: a biomechanical study[J]. 3D Print Med, 2020, 6(1): 31. doi:10.1186/s41205-020-00084-3
[17] Olson MD, Barrera JE. A comparison of an absorbable nasal implant versus functional rhinoplasty for nasal obstruction[J]. Am J Otolaryngol, 2021, 42(6): 103118. doi:10.1016/j.amjoto.2021.103118
[18] Takagi D, Lin WK, Matsumoto T, et al. High-precision three-dimensional inkjet technology for live cell bioprinting[J]. Int J Bioprint, 2019, 5(2): 208. doi:10.18063/ijb.v5i2.208
[19] 张帆, 李高峰, 胡益高, 等. 颗粒软骨加α-氰基丙烯酸正丁酯胶结合3D打印技术辅助制作个性化耳支架[J]. 中国组织工程研究, 2020, 24(34): 5520-5525. doi:10.3969/j.issn.2095-4344.2321 ZHANG Fan, LI Gaofeng, HU Yigao, et al. Granule cartilage plus n-butyl α-cyanoacrylate glue combined with 3D printing technology for preparation of individualized ear scaffolds[J]. Chinese Journal of Tissue Engineering Research, 2020, 24(34): 5520-5525. doi:10.3969/j.issn.2095-4344.2321
[20] Hull SM, Brunel LG, Heilshorn SC. 3D bioprinting of cell-laden hydrogels for improved biological functionality[J]. Adv Mater, 2022, 34(2): e2103691. doi:10.1002/adma.202103691
[21] Groll J, Burdick JA, Cho DW, et al. A definition of bioinks and their distinction from biomaterial inks[J]. Biofabrication, 2018, 11(1): 013001. doi:10.1088/1758-5090/aaec52
[22] Kuru I, Maier H, Müller M, et al. A 3D-printed functioning anatomical human middle ear model[J]. Hear Res, 2016, 340: 204-213. doi:10.1016/j.heares.2015.12.025
[23] Remuiñán-Pose P, López-Iglesias C, Iglesias-Mejuto A, et al. Preparation of vancomycin-loaded aerogels implementing inkjet printing and superhydrophobic surfaces[J]. Gels, 2022, 8(7): 417. doi:10.3390/gels8070417
[24] 杨明洁, 梁艳, 权怡辰, 等. 自体软骨颗粒填充鼻翼基底的临床应用[J]. 中国美容整形外科杂志, 2019, 30(2): 109-111. doi:10.3969/j.issn.1673-7040.2019.02.012 YANG Mingjie, LIANG Yan, QUAN Yichen, et al. Application of autologous diced cartilage in paranasal augmentation[J]. Chinese Journal of Aesthetic and Plastic Surgery, 2019, 30(2): 109-111. doi:10.3969/j.issn.1673-7040.2019.02.012
[25] 楚祺, 胡刚. 鼻基底区凹陷填充治疗的研究进展[J]. 中国美容整形外科杂志, 2021, 32(9): 541-542
[26] Tse RW, Knight R, Oestreich M, et al. Unilateral cleft lip nasal deformity: three-dimensional analysis of the primary deformity and longitudinal changes following primary correction of the nasal foundation[J]. Plast Reconstr Surg, 2020, 145(1): 185-199. doi:10.1097/PRS.0000000000006389
[27] 李萍, 贾敏. 自体脂肪填充联合自体肋软骨对Binder综合征短鼻畸形的矫正[J]. 中国临床研究, 2019, 32(2): 232-235. doi:10.13429/j.cnki.cjcr.2019.02.022 LI Ping, JIA Min. Autogenous fat combined with autogenous costal cartilage in correction of Binder syndrome patient with short-nose deformity[J]. Chinese Journal of Clinical Research, 2019, 32(2): 232-235. doi:10.13429/j.cnki.cjcr.2019.02.022
[28] Yi HG, Choi YJ, Jung JW, et al. Three-dimensional printing of a patient-specific engineered nasal cartilage for augmentative rhinoplasty[J]. J Tissue Eng, 2019, 10: 2041731418824797. doi:10.1177/2041731418824797
[29] 蒋治远, 游晓波, 蔡震, 等. 自体肋软骨移植技术修复Binder综合征的疗效评价[J]. 中国修复重建外科杂志, 2018, 32(8): 1056-1060. doi: 10.7507/1002-1892.201802064 JIANG Zhiyuan, YOU Xiaobo, CAI Zhen, et al. Effectiveness of autologous costal cartilage transplantation in repair of Binder's syndrome[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2018, 32(8): 1056-1060. doi: 10.7507/1002-1892.201802064
[30] Jodat YA, Kiaee K, Vela Jarquin D, et al. A 3D-printed hybrid nasal cartilage with functional electronic olfaction[J]. Adv Sci, 2020, 7(5): 1901878. doi:10.1002/advs.201901878
[31] Cao YY, Sang SB, An Y, et al. Progress of 3D printing techniques for nasal cartilage regeneration[J]. Aesthetic Plast Surg, 2022, 46(2): 947-964. doi:10.1007/s00266-021-02472-4
[32] 张金辉, 任志龙, 翟旭, 等. 3D设计打印PEEK假体填充鼻基底部临床应用一例[J]. 中国美容整形外科杂志, 2022, 33(10): 637-638. doi:10.3969/j.issn.1673-7040.2022.10.021 ZHANG Jinhui, REN Zhilong, ZHAI Xu, et al. Clinical application of 3D design printing PEEK prosthesis to fill the base of nose: a case report[J]. Chinese Journal of Aesthetic and Plastic Surgery, 2022, 33(10): 637-638. doi:10.3969/j.issn.1673-7040.2022.10.021
[33] Zhang C, Wang G, Lin HY, et al. Cartilage 3D bioprinting for rhinoplasty using adipose-derived stem cells as seed cells: review and recent advances[J]. Cell Prolif, 2023, 56(4): e13417. doi:10.1111/cpr.13417
[34] 路冬冬, 朱天峰, 张一健, 等. 3D生物打印甲基丙烯酰化明胶水凝胶支架促进软骨下骨缺损的修复[J]. 中国组织工程研究, 2022, 26(34): 5454-5460 LU Dongdong, ZHU Tianfeng, ZHANG Yijian, et al. 3D bio-printing methylacrylated gelatin hydrogel scaffolds promote the repair of subchondral bone defects[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(34): 5454-5460
[35] 程德林, 陈必秀, 吴明明, 等. 3D打印复合墨水体系在软骨组织工程领域研究[J]. 中国科学(技术科学), 2021, 51(9): 981-997. doi:10.1360/SST-2020-0259 CHENG Delin, CHEN Bixiu, WU Mingming, et al. Research progress of 3D printing composite inks for cartilage tissue engineering[J]. Scientia Sinica(Technologica), 2021, 51(9): 981-997. doi:10.1360/SST-2020-0259
[36] Yun BG, Lee SH, Jeon JH, et al. Accelerated bone regeneration via three-dimensional cell-printed constructs containing human nasal turbinate-derived stem cells as a clinically applicable therapy[J]. ACS Biomater Sci Eng, 2019, 5(11): 6171-6185. doi:10.1021/acsbiomaterials.9b01356
[37] Medikeri GS, Khong GC, Fleming S, et al. Quality-of-life changes following three-dimensional printing of prosthesis for large nasal septal perforations-Our experience of 13 patients[J]. Clin Otolaryngol, 2021, 46(1): 60-64. doi:10.1111/coa.13622
[38] Gnatowski P, Gwizdaa K, Kurdyn A, et al. Investigation on filaments for 3D printing of nasal septum cartilage implant[J]. Materials, 2023, 16(9): 3534. doi:10.3390/ma16093534
[39] Rajzer I, Strk P, Wiatr M, et al. Biomaterials in the reconstruction of nasal septum perforation[J]. Ann Otol Rhinol Laryngol, 2021, 130(7): 731-737. doi:10.1177/0003489420970589
[40] 吴昆旻, 吴建, 李泽卿, 等. 3D打印辅助上颌骨切除术后缺损重建[J]. 山东大学耳鼻喉眼学报, 2016, 30(6): 29-32. doi: 10.6040/j.issn.1673-3770.0.2016.368 WU Kunmin, WU Jian, LI Zeqing, et al. Application of three-dimensional printing technique in assisting reconstruction after maxillectomy[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2016, 30(6): 29-32. doi: 10.6040/j.issn.1673-3770.0.2016.368
[41] 葛瑜庭, 许晨婕, 王珮华, 等. 两种鼻骨复位器在鼻骨复位术中的应用研究[J]. 中国耳鼻咽喉颅底外科杂志, 2021, 27(2): 131-137. doi:10.11798/j.issn.1007-1520.202103248 GE Yuting, XU Chenjie, WANG Peihua, et al. Clinical study on application of two nasal bone reduction devices in nasal bone reduction[J]. Chinese Journal of Otorhinolaryngology-Skull Base Surgery, 2021, 27(2): 131-137. doi:10.11798/j.issn.1007-1520.202103248
[42] 汪涛, 陈东, 蔡伟宇, 等. 3D打印鼻前庭支撑扩张在前鼻孔狭窄治疗中的应用[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(10): 746-752. doi:10.13201/j.issn.2096-7993.2022.10.004 WANG Tao, CHEN Dong, CAI Weiyu, et al. Application of 3D printed nasal vestibular support in the treatment of anterior nostril stenosis[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2022, 36(10): 746-752. doi:10.13201/j.issn.2096-7993.2022.10.004
[43] 马瑞萍, 郑国玺, 鄂殿玉, 等. 基于3D打印透明鼻腔模型的鼻阻力变化规律研究[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(12): 1101-1106. doi:10.13201/j.issn.2096-7993.2021.12.009 MA Ruiping, ZHENG Guoxi, E Dianyu, et al. Study on changes of nasal resistance based on 3D printing transparent nasal cavity models[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2021, 35(12): 1101-1106. doi:10.13201/j.issn.2096-7993.2021.12.009
[44] 查洋, 吕威, 高雅丽, 等. 以鼻窦引流通道为关注点的断面解剖模型设计[J]. 临床耳鼻咽喉头颈外科杂志, 2018, 32(9): 683-686. doi:10.13201/j.issn.1001-1781.2018.09.010 ZHA Yang, LÜ Wei, GAO Yali, et al. Design of cross-sectional anatomical model focused on drainage pathways of paranasal sinuses[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2018, 32(9): 683-686. doi:10.13201/j.issn.1001-1781.2018.09.010
[45] Grau S, Kellermann S, Faust M, et al. Repair of cerebrospinal fluid leakage using a transfrontal, radial adipofascial flap: an individual approach supported by three-dimensional printing for surgical planning[J]. World Neurosurg, 2018, 110: 315-318. doi:10.1016/j.wneu.2017.11.083
[46] Zhao K, Kim K, Craig JR, et al. Using 3D printed sinonasal models to visualize and optimize personalized sinonasal sinus irrigation strategies[J]. Rhinology, 2020, 58(3): 266-272. doi:10.4193/Rhin19.314
[47] Lee WJ, Kim YH, Hong SD, et al. Development of 3-dimensional printed simulation surgical training models for endoscopic endonasal and transorbital surgery[J]. Front Oncol, 2022, 12: 966051. doi:10.3389/fonc.2022.966051
[48] Barber SR, Jain S, Son YJ, et al. Virtual functional endoscopic sinus surgery simulation with 3D-printed models for mixed-reality nasal endoscopy[J]. Otolaryngol Head Neck Surg, 2018, 159(5): 933-937. doi:10.1177/0194599818797586
[49] Barber SR, Kozin ED, Naunheim MR, et al. 3D-printed tracheoesophageal puncture and prosthesis placement simulator[J]. Am J Otolaryngol, 2018, 39(1): 37-40. doi:10.1016/j.amjoto.2017.08.001
[50] 朱志玲, 李松, 管国芳. 人工智能在耳鼻咽喉头颈外科的运用及展望[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 115-120. doi: 10.6040/j.issn.1673-3770.0.2019.598 ZHU Zhiling, LI Song, GUAN Guofang. Application and prospect of artificial intelligence in otolaryngology[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(2): 115-120. doi: 10.6040/j.issn.1673-3770.0.2019.598
[51] 郭颖媛, 张德军, 管国芳, 等. 3D打印技术在耳鼻喉科住院医师规范化培训中的应用探索[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 119-122. doi: 10.6040/j.issn.1673-3770.0.2017.166 GUO Yinyuan, ZHANG Dejun, GUAN Guofang, et al. Exploration of the application of three-dimensional printing technology in the standardized training of doctors in the otolaryngological department[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017, 31(3): 119-122. doi: 10.6040/j.issn.1673-3770.0.2017.166
[52] Schlegel L, Malani E, Belko S, et al. Design, printing optimization, and material testing of a 3D-printed nasal osteotomy task trainer[J]. 3D Print Med, 2023, 9(1): 20. doi:10.1186/s41205-023-00185-9
[53] Low CM, Choby G, Viozzi M, et al. Construction of three-dimensional printed anatomic models for frontal sinus education[J]. Neuroradiol J, 2020, 33(1): 80-84. doi:10.1177/1971400919849781
[54] Shen Z, Xie Y, Shang XQ, et al. The manufacturing procedure of 3D printed models for endoscopic endonasal transsphenoidal pituitary surgery[J]. Technol Health Care, 2020, 28(S1): 131-150. doi:10.3233/THC-209014
[55] Gao RW, Rooney D, Harvey R, et al. To pack a nose: high-fidelity epistaxis simulation using 3D printing technology[J]. Laryngoscope, 2022, 132(4): 747-753. doi:10.1002/lary.29757
[56] Dong D, Liu WT, Wu SX, et al. Use of high-fidelity 3-dimensional-printed models for training novice residents in basic nasal endoscopic skills[J]. Int Forum Allergy Rhinol, 2020, 10(12): 1309-1315. doi:10.1002/alr.22601
[57] Kim DH, Kim HM, Park JS, et al. Virtual reality haptic simulator for endoscopic sinus and skull base surgeries[J]. J Craniofac Surg, 2020, 31(6): 1811-1814. doi:10.1097/SCS.0000000000006395
[58] Sriwastwa A, Ravi P, Emmert A, et al. Generative AI for medical 3D printing: a comparison of ChatGPT outputs to reference standard education[J]. 3D Print Med, 2023, 9(1): 21. doi:10.1186/s41205-023-00186-8
[59] Vimawala S, Gao T, Goldfarb J, et al. Initial experience using 3-dimensional printed models for head and neck reconstruction in Haiti[J]. Ear Nose Throat J, 2022, 101(3): NP89-NP91. doi:10.1177/0145561320938920
[60] Vaz VM, Kumar L. 3D printing as a promising tool in personalized medicine[J]. AAPS PharmSciTech, 2021, 22(1): 49. doi:10.1208/s12249-020-01905-8
[61] Dai GY, Xu X, Wu XH, et al. Application of 3D-print silica bolus for nasal NK/T-cell lymphoma radiation therapy[J]. J Radiat Res, 2020, 61(6): 920-928. doi:10.1093/jrr/rraa084
[62] Menegatou IM, Papakyriakopoulou P, Rekkas DM, et al. Design of a personalized nasal device(matrix-piston nasal device, MPD)for drug delivery: a 3D-printing application[J]. AAPS PharmSciTech, 2022, 23(6): 205. doi:10.1208/s12249-022-02351-4
[63] Gong D, Ma YH, Yang XL, et al. Study on cytotoxicity of three-dimensional printed β-tricalcium phosphate loaded poly(lactide-co-glycolide)anti-tuberculosis drug sustained release microspheres and its effect on osteogenic differentiation of bone marrow mesenchymal stem cells[J]. Chin J Reparative Reconstr Surg, 2018, 32(9): 1131-1136. doi:10.7507/1002-1892.201803067
[64] 王建, 范江伟, 陈洪涛. 3D打印多孔β-TCP负载VAN/PLGA缓释微球复合支架的表征评价[J]. 北京生物医学工程, 2022, 41(5): 471-476. doi: 10.3969/j.issn.1002-3208.2022.05.006 WANG Jian, FAN Jiangwei, CHEN Hongtao. Characterization and evaluation of 3D printed porous β-TCP scaffolds loaded with VAN/PLGA microsphere scaffold[J]. Beijing Biomedical Engineering, 2022, 41(5): 471-476. doi: 10.3969/j.issn.1002-3208.2022.05.006
[65] Zeng W, Hui H, Liu ZY, et al. TPP ionically cross-linked chitosan/PLGA microspheres for the delivery of NGF for peripheral nerve system repair[J]. Carbohydr Polym, 2021, 258: 117684. doi:10.1016/j.carbpol.2021.117684
[66] 钟自玲, 瞿申红, 韩星, 等. 兔耳郭软骨细胞的分离培养与鉴定[J]. 中国组织工程研究, 2022, 26(23): 3633-3637 ZHONG Ziling, QU Shenhong, HAN Xing, et al. Isolation, culture and identification of rabbit auricular chondrocytes[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(23): 3633-3637
[67] Papantoniou I, Sonnaert M, Geris L, et al. Three-dimensional characterization of tissue-engineered constructs by contrast-enhanced nanofocus computed tomography[J]. Tissue Eng Part C Methods, 2014, 20(3): 177-187. doi:10.1089/ten.TEC.2013.0041
[68] Honig B, Shapiro L. Adhesion protein structure, molecular affinities, and principles of cell-cell recognition[J]. Cell, 2020, 181(3): 520-535. doi:10.1016/j.cell.2020.04.010
[1] LI Danfeng, CHEN Fuquan, SHI Li, WANG Jian, XU Min. Application of three-dimensional image processing combined with image navigation technology in perioperative teaching of advanced doctors in rhinology [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 113-118.
[2] WU Kunmin, WU Jian, LI Zeqing, CHEN Wei, ZHU Chunhui, YANG Qi. Application of three-dimensional printing technique in assisting reconstruction after maxillectomy. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(6): 29-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 84 -87 .
[2] NIU Shanli,CHAI Maowen,LI Zhenxiu . Endoscopic rhinoplasty of inferior turbinate in 60 patients with chronic hypertrophic rhinitis[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 16 -18 .
[3] MENG Qing-guo,LU Yong-tian,FAN Xian-liang .

Association of killer cell immunoglobulin-like receptor gene polymorphisms with nasopharyngeal carcinoma

[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 196 -199 .
[4] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 199 -199 .
[5] WAN Li-jia,LU Hai-tao,JIANG Yi-dao,LIU Hui,LI Qin,SHE La-zhi . Effect of H-uvulopalatopharyngoplasty on obstructive sleep apnea
hypopnea syndrome
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 204 -205 .
[6] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 222 -224 .
[7] JI Xiao-bin,DENG Jia-de,ZANG Lin-quan,WANG Lei,XIE Jun . Blood histamine in guinea pigs with allergic rhinitis[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 228 -230 .
[8] XIANG Deng,LU Yong-tian,SUN Huan-ji . Endoscopic repair for cerebrospinal fluid rhinorrhea in 19 cases and a literature review [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 234 -236 .
[9] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 253 -257 .
[10]
YIN Guo-hua,ZHONG Xiao . Long-term effect of laser reduction on lingua adenoids
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 280 -282 .