Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2024, Vol. 38 ›› Issue (2): 128-136.doi: 10.6040/j.issn.1673-3770.0.2023.270
• Review • Previous Articles Next Articles
CHENG Xiqiao1,2, QU Shenhong2
CLC Number:
[1] | Hsieh TY, Cervenka B, Dedhia R, et al. Assessment of a patient-specific, 3-dimensionally printed endoscopic sinus and skull base surgical model[J]. JAMA Otolaryngol Head Neck Surg, 2018, 144(7): 574-579. doi:10.1001/jamaoto.2018.0473 |
[2] | 顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5): 24-47 GU Dongdong, ZHANG Hongmei, CHEN Hongyu, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47(5): 24-47 |
[3] | Choudhury D, Anand S, Naing MW. The arrival of commercial bioprinters-Towards 3D bioprinting revolution![J]. Int J Bioprint, 2018, 4(2): 139. doi:10.18063/IJB.v4i2.139 |
[4] | Ka carevi cZP, Rider PM, Alkildani S, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects[J]. Materials, 2018, 11(11): 2199. doi:10.3390/ma11112199 |
[5] | Suarez-Martinez AD, Sole-Gras M, Dykes SS, et al. Bioprinting on live tissue for investigating cancer cell dynamics[J]. Tissue Eng Part A, 2021, 27(7/8): 438-453. doi:10.1089/ten.TEA.2020.0190 |
[6] | K Handral H, Tay SH, Weng WC, et al. 3D Printing of cultured meat products[J]. Crit Rev Food Sci Nutr, 2022, 62(1): 272-281. doi:10.1080/10408398.2020.1815172 |
[7] | 贺超良, 汤朝晖, 田华雨, 等. 3D打印技术制备生物医用高分子材料的研究进展[J]. 高分子学报, 2013(6): 722-732 HE Chaoliang, TANG Huitang, TIAN Huayu, et al. Progress in the development of biomedical polymer materials fabricated by 3-dimensional printing technology[J]. Acta Polymerica Sinica, 2013(6): 722-732 |
[8] | 王艳杰, 程冯丽, 赵长青. 3D打印技术应用于耳鼻咽喉科临床前瞻创新[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 114-118. doi: 10.6040/j.issn.1673-3770.0.2019.538 WANG YanJie, CHENG Fengli, ZHAO Changqing. Latest research progress of 3D printing technology and clinical applications in otorhinolaryngology[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 114-118. doi: 10.6040/j.issn.1673-3770.0.2019.538 |
[9] | 罗慧娉, 方锐, 蒋家琪. 3D打印支气管模型用于硬支气管镜检查的模拟训练[J]. 中国眼耳鼻喉科杂志, 2020, 20(3): 230-232. doi:10.14166/j.issn.1671-2420.2020.03.024 LUO Huiping, FANG Rui, JIANG Jiaqi. Rigid bronchoscopy training with a 3D printed bronchial model[J]. Chinese Journal of Ophthalmology and Otorhinolaryngology, 2020, 20(3): 230-232. doi:10.14166/j.issn.1671-2420.2020.03.024 |
[10] | Chytas D, Piagkou M, Johnson EO. Can three-dimensional visualization technologies be more effective than cadavers for dental anatomy education?[J]. Anat Sci Educ, 2020, 13(5): 664-665. doi:10.1002/ase.1953 |
[11] | Khorsandi D, Fahimipour A, Abasian P, et al. 3D and 4D printing in dentistry and maxillofacial surgery: printing techniques, materials, and applications[J]. Acta Biomater, 2021, 122: 26-49. doi:10.1016/j.actbio.2020.12.044 |
[12] | Zhu YF, Zhou YM, Zhao QN, et al. 3D technique-based nonsurgical correction of deformational congenital auricular deformities[J]. ORL J Otorhinolaryngol Relat Spec, 2021, 83(2): 59-64. doi:10.1159/000509493 |
[13] | 李腾海, 杨田野, 彭维海. 3D打印耳廓模型在耳廓再造软骨支架雕刻成形中的应用[J]. 吉林大学学报(医学版), 2023, 49(3): 770-776. doi:10.13481/j.1671-587X.20230328 LI Tenghai, YANG Tianye, PENG Weihai. Application of 3D printing auricular model in carving and shaping of cartilage scaffold in auricle reconstruction[J]. Journal of Jilin University(Medicine Edition), 2023, 49(3): 770-776. doi:10.13481/j.1671-587X.20230328 |
[14] | Holländer J, Genina N, Jukarainen H, et al. Three-dimensional printed PCL-based implantable prototypes of medical devices for controlled drug delivery[J]. J Pharm Sci, 2016, 105(9): 2665-2676. doi:10.1016/j.xphs.2015.12.012 |
[15] | Melocchi A, Parietti F, Maroni A, et al. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling[J]. Int J Pharm, 2016, 509(1/2): 255-263. doi:10.1016/j.ijpharm.2016.05.036 |
[16] | Landaeta FJ, Shiozawa JN, Erdman A, et al. Low cost 3D printed clamps for external fixator for developing countries: a biomechanical study[J]. 3D Print Med, 2020, 6(1): 31. doi:10.1186/s41205-020-00084-3 |
[17] | Olson MD, Barrera JE. A comparison of an absorbable nasal implant versus functional rhinoplasty for nasal obstruction[J]. Am J Otolaryngol, 2021, 42(6): 103118. doi:10.1016/j.amjoto.2021.103118 |
[18] | Takagi D, Lin WK, Matsumoto T, et al. High-precision three-dimensional inkjet technology for live cell bioprinting[J]. Int J Bioprint, 2019, 5(2): 208. doi:10.18063/ijb.v5i2.208 |
[19] | 张帆, 李高峰, 胡益高, 等. 颗粒软骨加α-氰基丙烯酸正丁酯胶结合3D打印技术辅助制作个性化耳支架[J]. 中国组织工程研究, 2020, 24(34): 5520-5525. doi:10.3969/j.issn.2095-4344.2321 ZHANG Fan, LI Gaofeng, HU Yigao, et al. Granule cartilage plus n-butyl α-cyanoacrylate glue combined with 3D printing technology for preparation of individualized ear scaffolds[J]. Chinese Journal of Tissue Engineering Research, 2020, 24(34): 5520-5525. doi:10.3969/j.issn.2095-4344.2321 |
[20] | Hull SM, Brunel LG, Heilshorn SC. 3D bioprinting of cell-laden hydrogels for improved biological functionality[J]. Adv Mater, 2022, 34(2): e2103691. doi:10.1002/adma.202103691 |
[21] | Groll J, Burdick JA, Cho DW, et al. A definition of bioinks and their distinction from biomaterial inks[J]. Biofabrication, 2018, 11(1): 013001. doi:10.1088/1758-5090/aaec52 |
[22] | Kuru I, Maier H, Müller M, et al. A 3D-printed functioning anatomical human middle ear model[J]. Hear Res, 2016, 340: 204-213. doi:10.1016/j.heares.2015.12.025 |
[23] | Remuiñán-Pose P, López-Iglesias C, Iglesias-Mejuto A, et al. Preparation of vancomycin-loaded aerogels implementing inkjet printing and superhydrophobic surfaces[J]. Gels, 2022, 8(7): 417. doi:10.3390/gels8070417 |
[24] | 杨明洁, 梁艳, 权怡辰, 等. 自体软骨颗粒填充鼻翼基底的临床应用[J]. 中国美容整形外科杂志, 2019, 30(2): 109-111. doi:10.3969/j.issn.1673-7040.2019.02.012 YANG Mingjie, LIANG Yan, QUAN Yichen, et al. Application of autologous diced cartilage in paranasal augmentation[J]. Chinese Journal of Aesthetic and Plastic Surgery, 2019, 30(2): 109-111. doi:10.3969/j.issn.1673-7040.2019.02.012 |
[25] | 楚祺, 胡刚. 鼻基底区凹陷填充治疗的研究进展[J]. 中国美容整形外科杂志, 2021, 32(9): 541-542 |
[26] | Tse RW, Knight R, Oestreich M, et al. Unilateral cleft lip nasal deformity: three-dimensional analysis of the primary deformity and longitudinal changes following primary correction of the nasal foundation[J]. Plast Reconstr Surg, 2020, 145(1): 185-199. doi:10.1097/PRS.0000000000006389 |
[27] | 李萍, 贾敏. 自体脂肪填充联合自体肋软骨对Binder综合征短鼻畸形的矫正[J]. 中国临床研究, 2019, 32(2): 232-235. doi:10.13429/j.cnki.cjcr.2019.02.022 LI Ping, JIA Min. Autogenous fat combined with autogenous costal cartilage in correction of Binder syndrome patient with short-nose deformity[J]. Chinese Journal of Clinical Research, 2019, 32(2): 232-235. doi:10.13429/j.cnki.cjcr.2019.02.022 |
[28] | Yi HG, Choi YJ, Jung JW, et al. Three-dimensional printing of a patient-specific engineered nasal cartilage for augmentative rhinoplasty[J]. J Tissue Eng, 2019, 10: 2041731418824797. doi:10.1177/2041731418824797 |
[29] | 蒋治远, 游晓波, 蔡震, 等. 自体肋软骨移植技术修复Binder综合征的疗效评价[J]. 中国修复重建外科杂志, 2018, 32(8): 1056-1060. doi: 10.7507/1002-1892.201802064 JIANG Zhiyuan, YOU Xiaobo, CAI Zhen, et al. Effectiveness of autologous costal cartilage transplantation in repair of Binder's syndrome[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2018, 32(8): 1056-1060. doi: 10.7507/1002-1892.201802064 |
[30] | Jodat YA, Kiaee K, Vela Jarquin D, et al. A 3D-printed hybrid nasal cartilage with functional electronic olfaction[J]. Adv Sci, 2020, 7(5): 1901878. doi:10.1002/advs.201901878 |
[31] | Cao YY, Sang SB, An Y, et al. Progress of 3D printing techniques for nasal cartilage regeneration[J]. Aesthetic Plast Surg, 2022, 46(2): 947-964. doi:10.1007/s00266-021-02472-4 |
[32] | 张金辉, 任志龙, 翟旭, 等. 3D设计打印PEEK假体填充鼻基底部临床应用一例[J]. 中国美容整形外科杂志, 2022, 33(10): 637-638. doi:10.3969/j.issn.1673-7040.2022.10.021 ZHANG Jinhui, REN Zhilong, ZHAI Xu, et al. Clinical application of 3D design printing PEEK prosthesis to fill the base of nose: a case report[J]. Chinese Journal of Aesthetic and Plastic Surgery, 2022, 33(10): 637-638. doi:10.3969/j.issn.1673-7040.2022.10.021 |
[33] | Zhang C, Wang G, Lin HY, et al. Cartilage 3D bioprinting for rhinoplasty using adipose-derived stem cells as seed cells: review and recent advances[J]. Cell Prolif, 2023, 56(4): e13417. doi:10.1111/cpr.13417 |
[34] | 路冬冬, 朱天峰, 张一健, 等. 3D生物打印甲基丙烯酰化明胶水凝胶支架促进软骨下骨缺损的修复[J]. 中国组织工程研究, 2022, 26(34): 5454-5460 LU Dongdong, ZHU Tianfeng, ZHANG Yijian, et al. 3D bio-printing methylacrylated gelatin hydrogel scaffolds promote the repair of subchondral bone defects[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(34): 5454-5460 |
[35] | 程德林, 陈必秀, 吴明明, 等. 3D打印复合墨水体系在软骨组织工程领域研究[J]. 中国科学(技术科学), 2021, 51(9): 981-997. doi:10.1360/SST-2020-0259 CHENG Delin, CHEN Bixiu, WU Mingming, et al. Research progress of 3D printing composite inks for cartilage tissue engineering[J]. Scientia Sinica(Technologica), 2021, 51(9): 981-997. doi:10.1360/SST-2020-0259 |
[36] | Yun BG, Lee SH, Jeon JH, et al. Accelerated bone regeneration via three-dimensional cell-printed constructs containing human nasal turbinate-derived stem cells as a clinically applicable therapy[J]. ACS Biomater Sci Eng, 2019, 5(11): 6171-6185. doi:10.1021/acsbiomaterials.9b01356 |
[37] | Medikeri GS, Khong GC, Fleming S, et al. Quality-of-life changes following three-dimensional printing of prosthesis for large nasal septal perforations-Our experience of 13 patients[J]. Clin Otolaryngol, 2021, 46(1): 60-64. doi:10.1111/coa.13622 |
[38] | Gnatowski P, Gwizdaa K, Kurdyn A, et al. Investigation on filaments for 3D printing of nasal septum cartilage implant[J]. Materials, 2023, 16(9): 3534. doi:10.3390/ma16093534 |
[39] | Rajzer I, Strk P, Wiatr M, et al. Biomaterials in the reconstruction of nasal septum perforation[J]. Ann Otol Rhinol Laryngol, 2021, 130(7): 731-737. doi:10.1177/0003489420970589 |
[40] | 吴昆旻, 吴建, 李泽卿, 等. 3D打印辅助上颌骨切除术后缺损重建[J]. 山东大学耳鼻喉眼学报, 2016, 30(6): 29-32. doi: 10.6040/j.issn.1673-3770.0.2016.368 WU Kunmin, WU Jian, LI Zeqing, et al. Application of three-dimensional printing technique in assisting reconstruction after maxillectomy[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2016, 30(6): 29-32. doi: 10.6040/j.issn.1673-3770.0.2016.368 |
[41] | 葛瑜庭, 许晨婕, 王珮华, 等. 两种鼻骨复位器在鼻骨复位术中的应用研究[J]. 中国耳鼻咽喉颅底外科杂志, 2021, 27(2): 131-137. doi:10.11798/j.issn.1007-1520.202103248 GE Yuting, XU Chenjie, WANG Peihua, et al. Clinical study on application of two nasal bone reduction devices in nasal bone reduction[J]. Chinese Journal of Otorhinolaryngology-Skull Base Surgery, 2021, 27(2): 131-137. doi:10.11798/j.issn.1007-1520.202103248 |
[42] | 汪涛, 陈东, 蔡伟宇, 等. 3D打印鼻前庭支撑扩张在前鼻孔狭窄治疗中的应用[J]. 临床耳鼻咽喉头颈外科杂志, 2022, 36(10): 746-752. doi:10.13201/j.issn.2096-7993.2022.10.004 WANG Tao, CHEN Dong, CAI Weiyu, et al. Application of 3D printed nasal vestibular support in the treatment of anterior nostril stenosis[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2022, 36(10): 746-752. doi:10.13201/j.issn.2096-7993.2022.10.004 |
[43] | 马瑞萍, 郑国玺, 鄂殿玉, 等. 基于3D打印透明鼻腔模型的鼻阻力变化规律研究[J]. 临床耳鼻咽喉头颈外科杂志, 2021, 35(12): 1101-1106. doi:10.13201/j.issn.2096-7993.2021.12.009 MA Ruiping, ZHENG Guoxi, E Dianyu, et al. Study on changes of nasal resistance based on 3D printing transparent nasal cavity models[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2021, 35(12): 1101-1106. doi:10.13201/j.issn.2096-7993.2021.12.009 |
[44] | 查洋, 吕威, 高雅丽, 等. 以鼻窦引流通道为关注点的断面解剖模型设计[J]. 临床耳鼻咽喉头颈外科杂志, 2018, 32(9): 683-686. doi:10.13201/j.issn.1001-1781.2018.09.010 ZHA Yang, LÜ Wei, GAO Yali, et al. Design of cross-sectional anatomical model focused on drainage pathways of paranasal sinuses[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2018, 32(9): 683-686. doi:10.13201/j.issn.1001-1781.2018.09.010 |
[45] | Grau S, Kellermann S, Faust M, et al. Repair of cerebrospinal fluid leakage using a transfrontal, radial adipofascial flap: an individual approach supported by three-dimensional printing for surgical planning[J]. World Neurosurg, 2018, 110: 315-318. doi:10.1016/j.wneu.2017.11.083 |
[46] | Zhao K, Kim K, Craig JR, et al. Using 3D printed sinonasal models to visualize and optimize personalized sinonasal sinus irrigation strategies[J]. Rhinology, 2020, 58(3): 266-272. doi:10.4193/Rhin19.314 |
[47] | Lee WJ, Kim YH, Hong SD, et al. Development of 3-dimensional printed simulation surgical training models for endoscopic endonasal and transorbital surgery[J]. Front Oncol, 2022, 12: 966051. doi:10.3389/fonc.2022.966051 |
[48] | Barber SR, Jain S, Son YJ, et al. Virtual functional endoscopic sinus surgery simulation with 3D-printed models for mixed-reality nasal endoscopy[J]. Otolaryngol Head Neck Surg, 2018, 159(5): 933-937. doi:10.1177/0194599818797586 |
[49] | Barber SR, Kozin ED, Naunheim MR, et al. 3D-printed tracheoesophageal puncture and prosthesis placement simulator[J]. Am J Otolaryngol, 2018, 39(1): 37-40. doi:10.1016/j.amjoto.2017.08.001 |
[50] | 朱志玲, 李松, 管国芳. 人工智能在耳鼻咽喉头颈外科的运用及展望[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 115-120. doi: 10.6040/j.issn.1673-3770.0.2019.598 ZHU Zhiling, LI Song, GUAN Guofang. Application and prospect of artificial intelligence in otolaryngology[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(2): 115-120. doi: 10.6040/j.issn.1673-3770.0.2019.598 |
[51] | 郭颖媛, 张德军, 管国芳, 等. 3D打印技术在耳鼻喉科住院医师规范化培训中的应用探索[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 119-122. doi: 10.6040/j.issn.1673-3770.0.2017.166 GUO Yinyuan, ZHANG Dejun, GUAN Guofang, et al. Exploration of the application of three-dimensional printing technology in the standardized training of doctors in the otolaryngological department[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017, 31(3): 119-122. doi: 10.6040/j.issn.1673-3770.0.2017.166 |
[52] | Schlegel L, Malani E, Belko S, et al. Design, printing optimization, and material testing of a 3D-printed nasal osteotomy task trainer[J]. 3D Print Med, 2023, 9(1): 20. doi:10.1186/s41205-023-00185-9 |
[53] | Low CM, Choby G, Viozzi M, et al. Construction of three-dimensional printed anatomic models for frontal sinus education[J]. Neuroradiol J, 2020, 33(1): 80-84. doi:10.1177/1971400919849781 |
[54] | Shen Z, Xie Y, Shang XQ, et al. The manufacturing procedure of 3D printed models for endoscopic endonasal transsphenoidal pituitary surgery[J]. Technol Health Care, 2020, 28(S1): 131-150. doi:10.3233/THC-209014 |
[55] | Gao RW, Rooney D, Harvey R, et al. To pack a nose: high-fidelity epistaxis simulation using 3D printing technology[J]. Laryngoscope, 2022, 132(4): 747-753. doi:10.1002/lary.29757 |
[56] | Dong D, Liu WT, Wu SX, et al. Use of high-fidelity 3-dimensional-printed models for training novice residents in basic nasal endoscopic skills[J]. Int Forum Allergy Rhinol, 2020, 10(12): 1309-1315. doi:10.1002/alr.22601 |
[57] | Kim DH, Kim HM, Park JS, et al. Virtual reality haptic simulator for endoscopic sinus and skull base surgeries[J]. J Craniofac Surg, 2020, 31(6): 1811-1814. doi:10.1097/SCS.0000000000006395 |
[58] | Sriwastwa A, Ravi P, Emmert A, et al. Generative AI for medical 3D printing: a comparison of ChatGPT outputs to reference standard education[J]. 3D Print Med, 2023, 9(1): 21. doi:10.1186/s41205-023-00186-8 |
[59] | Vimawala S, Gao T, Goldfarb J, et al. Initial experience using 3-dimensional printed models for head and neck reconstruction in Haiti[J]. Ear Nose Throat J, 2022, 101(3): NP89-NP91. doi:10.1177/0145561320938920 |
[60] | Vaz VM, Kumar L. 3D printing as a promising tool in personalized medicine[J]. AAPS PharmSciTech, 2021, 22(1): 49. doi:10.1208/s12249-020-01905-8 |
[61] | Dai GY, Xu X, Wu XH, et al. Application of 3D-print silica bolus for nasal NK/T-cell lymphoma radiation therapy[J]. J Radiat Res, 2020, 61(6): 920-928. doi:10.1093/jrr/rraa084 |
[62] | Menegatou IM, Papakyriakopoulou P, Rekkas DM, et al. Design of a personalized nasal device(matrix-piston nasal device, MPD)for drug delivery: a 3D-printing application[J]. AAPS PharmSciTech, 2022, 23(6): 205. doi:10.1208/s12249-022-02351-4 |
[63] | Gong D, Ma YH, Yang XL, et al. Study on cytotoxicity of three-dimensional printed β-tricalcium phosphate loaded poly(lactide-co-glycolide)anti-tuberculosis drug sustained release microspheres and its effect on osteogenic differentiation of bone marrow mesenchymal stem cells[J]. Chin J Reparative Reconstr Surg, 2018, 32(9): 1131-1136. doi:10.7507/1002-1892.201803067 |
[64] | 王建, 范江伟, 陈洪涛. 3D打印多孔β-TCP负载VAN/PLGA缓释微球复合支架的表征评价[J]. 北京生物医学工程, 2022, 41(5): 471-476. doi: 10.3969/j.issn.1002-3208.2022.05.006 WANG Jian, FAN Jiangwei, CHEN Hongtao. Characterization and evaluation of 3D printed porous β-TCP scaffolds loaded with VAN/PLGA microsphere scaffold[J]. Beijing Biomedical Engineering, 2022, 41(5): 471-476. doi: 10.3969/j.issn.1002-3208.2022.05.006 |
[65] | Zeng W, Hui H, Liu ZY, et al. TPP ionically cross-linked chitosan/PLGA microspheres for the delivery of NGF for peripheral nerve system repair[J]. Carbohydr Polym, 2021, 258: 117684. doi:10.1016/j.carbpol.2021.117684 |
[66] | 钟自玲, 瞿申红, 韩星, 等. 兔耳郭软骨细胞的分离培养与鉴定[J]. 中国组织工程研究, 2022, 26(23): 3633-3637 ZHONG Ziling, QU Shenhong, HAN Xing, et al. Isolation, culture and identification of rabbit auricular chondrocytes[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(23): 3633-3637 |
[67] | Papantoniou I, Sonnaert M, Geris L, et al. Three-dimensional characterization of tissue-engineered constructs by contrast-enhanced nanofocus computed tomography[J]. Tissue Eng Part C Methods, 2014, 20(3): 177-187. doi:10.1089/ten.TEC.2013.0041 |
[68] | Honig B, Shapiro L. Adhesion protein structure, molecular affinities, and principles of cell-cell recognition[J]. Cell, 2020, 181(3): 520-535. doi:10.1016/j.cell.2020.04.010 |
[1] | LI Danfeng, CHEN Fuquan, SHI Li, WANG Jian, XU Min. Application of three-dimensional image processing combined with image navigation technology in perioperative teaching of advanced doctors in rhinology [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 113-118. |
[2] | WU Kunmin, WU Jian, LI Zeqing, CHEN Wei, ZHU Chunhui, YANG Qi. Application of three-dimensional printing technique in assisting reconstruction after maxillectomy. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(6): 29-32. |
|