Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2021, Vol. 35 ›› Issue (5): 125-131.doi: 10.6040/j.issn.1673-3770.0.2020.449

Previous Articles     Next Articles

Model preparation of infectious keratitis

YAN Yu1,2, ZENG Ao1,2,HE Yuxi1   

  1. 1. Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130041, Jilin, China;
    2. Norman Bethune Health Science Center of Jilin University, Changchun 130021, Jilin, China
  • Published:2021-09-29

Abstract: Infectious keratitis is an inflammation caused by the invasion of pathogenic microorganisms on corneal tissue. It is a common cause of blindness in the world. The main pathogenic microorganisms are bacteria, fungi, viruses, and Acanthamoeba. Bacteria is the main cause of infectious keratitis, but fungal keratitis has been increasing year by year in recent years. At present, the effective treatment is local use or subconjunctival injection of anti-bacterial and fungal agents, and systemic use of antiviral drugs, based on the different pathogenic microorganisms. We systematically describe models preparation of infectious keratitis caused by bacteria, fungi, viruses, and Acanthamoeba, including the preparation of the bacterial solution, operation methods and scoring detection methods. This paper elaborates how to prepare a targeted animal model to provide theoretical basis for evaluating and exploring the treatment effect and adverse reactions of infectious keratitis.

Key words: Infectious keratitis, Animal model, Fungal keratitis, Bacterial keratitis

CLC Number: 

  • R772.21
[1] 郝文培, 翟华蕾, 孙晓彤, 等. 角膜再移植原因与植片失活的危险因素分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(3):134-140. doi:10.6040/j.issn.1673-3770.0.2019.605. HAO Wenpei, ZHAI Hualei, SUN Xiaotong, et al. Etiology of repeat keratoplasty and risk factors for failure of corneal grafts[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3):134-140. doi:10.6040/j.issn.1673-3770.0.2019.605.
[2] Manikandan P, Abdel-Hadi A, Randhir Babu Singh Y, et al. Fungal keratitis: epidemiology, rapid detection, and antifungal susceptibilities of Fusarium and Aspergillus isolates from cornealscrapings[J]. Biomed Res Int, 2019, 2019:6395840. doi:10.1155/2019/6395840.
[3] Mahmoudi S, Masoomi A, Ahmadikia K, et al. Fungal keratitis: an overview of clinical and laboratory aspects[J]. Mycoses, 2018, 61(12):916-930. doi:10.1111/myc.12822.
[4] Azher TN, Yin XT, Stuart PM. Understanding the role of chemokines and cytokines in experimental models of Herpes simplex keratitis[J]. J Immunol Res, 2017, 2017:1-5. doi:10.1155/2017/7261980.
[5] Como CN, Bubak AN, Blackmon AM, et al. Varicella zoster virus induces differential cell-type specific responses in human corneal epithelial cells and keratocytes[J]. Invest Ophthalmol Vis Sci, 2019, 60(2):704-711. doi:10.1167/iovs.18-25801.
[6] Pinna A, Porcu T, Boscia F, et al. Free-living amoebae keratitis[J]. Cornea, 2017, 36(7):785-790. doi:10.1097/ICO.0000000000001226.
[7] Lorenzo-Morales J, Khan NA, Walochnik J. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment[J]. Parasite, 2015, 22:10. doi:10.1051/parasite/2015010.
[8] Tolba ME, Huseein EA, Farrag HM, et al. Allovahlkampfia spelaea causing keratitis in humans[J]. PLoS Negl Trop Dis, 2016, 10(7):e0004841. doi:10.1371/journal.pntd.0004841.
[9] Nunes TE, Brazil NT, Fuentefria AM, et al. Acanthamoeba and Fusarium interactions: a possible problem in keratitis[J]. Acta Trop, 2016, 157:102-107. doi:10.1016/j.actatropica.2016.02.001.
[10] Saraswathi P, Beuerman RW. Corneal biofilms: from planktonic to microcolony formation in an experimental keratitis infection with Pseudomonas aeruginosa[J]. Ocul Surf, 2015, 13(4):331-345.doi:10.1016/j.jtos.2015.07.001.
[11] Metruccio MME, Wan SJ, Horneman H, et al. A novel murine model for contact lens wear reveals clandestine IL-1R dependent corneal parainflammation and susceptibility to microbial keratitis upon inoculation with Pseudomonas aeruginosa[J]. Ocul Surf, 2019, 17(1):119-133. doi:10.1016/j.jtos.2018.11.006.
[12] Alarcon I, Tam C, Mun JJ, et al. Factors impacting corneal epithelial barrier function against Pseudomonas aeruginosa traversal[J]. Invest Ophthalmol Vis Sci, 2011, 52(3):1368-1377. doi:10.1167/iovs.10-6125.
[13] Sun Y, Hise AG, Kalsow CM, et al. Staphylococcus aureus-induced corneal inflammation is dependent on Toll-like receptor 2 and myeloid differentiation factor 88[J]. Infect Immun, 2006, 74(9):5325-5332. doi:10.1128/IAI.00645-06.
[14] Tang AH, Caballero AR, Marquart ME, et al. Mechanism of Pseudomonas aeruginosa small protease(PASP), a corneal virulence factor[J]. Invest Ophthalmol Vis Sci, 2018, 59(15):5993-6002. doi:10.1167/iovs.18-25834.
[15] Zhu H, Kochevar IE, Behlau I, et al. Antimicrobial blue light therapy for infectious keratitis: ex vivo and in vivo studies[J]. Invest Ophthalmol Vis Sci, 2017, 58(1):586-593. doi:10.1167/iovs.16-20272.
[16] Barequet IS, Bourla Ni, Pessach YN, et al. Staphylolysin is an effective therapeutic agent for Staphylococcus aureus experimental keratitis[J]. Graefes Arch Clin Exp Ophthalmol, 2012, 250(2):223-229. doi: 10.1007/s00417-011-1822-6.
[17] Bischoff G, Kuhn D. Contact lens complications: Diagnosis and treatment[J]. Ophthalmologe, 2018, 115(12):1087-1102. doi: 10.1007/s00347-018-0812-z.
[18] Metruccio MME, Wan SJ, Horneman H, et al. A novel murine model for contact lens wear reveals clandestine IL-1R dependent corneal parainflammation and susceptibility to microbial keratitis upon inoculation with Pseudomonas aeruginosa[J]. Ocul Surf, 2019, 17(1):119-133. doi:10.1016/j.jtos.2018.11.006.
[19] Wei C, Zhu MF, Petroll WM, et al. Pseudomonas aeruginosa infectious keratitis in a high oxygen transmissible rigid contact lens rabbit model[J]. Invest Ophthalmol Vis Sci, 2014, 55(9):5890. doi:10.1167/iovs.14-14235.
[20] Chucair-Elliott AJ, Gurung HR, Carr MM, et al. Colony stimulating factor-1 receptor expressing cells infiltrating the cornea control corneal nerve degeneration in response to HSV-1 infection[J]. Invest Ophthalmol Vis Sci, 2017, 58(11):4670-4682. doi:10.1167/iovs.17-22159.
[21] Chucair-Elliott AJ, Zheng M, Carr DJJ. Degeneration and regeneration of corneal nerves in response to HSV-1 infection[J]. Investig Ophthalmol Vis Sci, 2015, 56(2):1097-1107. doi:10.1167/iovs.14-15596.
[22] Tsatsos M, MacGregor C, Athanasiadis I, et al. Herpes simplex virus keratitis: an update of the pathogenesis and current treatment with oral and topical antiviral agents[J]. Clin Exp Ophthalmol, 2016, 44(9):824-837. doi:10.1111/ceo.12785.
[23] Chucair-Elliott AJ, Carr MM, Carr DJJ. Long-term consequences of topical dexamethasone treatment during acute corneal HSV-1 infection on the immune system[J]. J Leukoc Biol, 2017, 101(5):1253-1261. doi:10.1189/jlb.4a1116-459r.
[24] Watson ZL, Washington SD, Phelan DM, et al. In vivo knockdown of the Herpes simplex virus 1 latency-associated transcript reduces reactivation from latency[J]. J Virol, 2018, 92(16):e00812-e00818. doi:10.1128/JVI.00812-18.
[25] Varanasi SK, Jaggi U, Hay N, et al. Hexokinase II may be dispensable for CD4 T cell responses against a virus infection[J]. PLoS One, 2018, 13(1):e0191533. doi:10.1371/journal.pone.0191533.
[26] Varanasi SK, Reddy PBJ, Bhela S, et al. Azacytidine treatment inhibits the progression of Herpes stromal keratitis by enhancing regulatory T cell function[J]. J Virol, 2017, 91(7):e02367-e02316. doi:10.1128/JVI.02367-16.
[27] 赵壮红. 单纯疱疹病毒性角膜炎小鼠模型的建立与鉴定[D]. 昆明: 昆明医科大学, 2019.
[28] 姜玉珍, 曾明范, 王兵, 等. 改良深板层角膜移植术治疗大鼠严重基质坏死型单纯疱疹病毒性角膜基质炎的临床效果[J]. 中华医院感染学杂志, 2020, 30(13):2027-2032. doi:10.11816/cn.ni.2020-191504. JIANGYuzhen, ZENG Mingfan, WANG Bing, et al. Clinical effect of modified deep lamellar keratoplasty on treatment of rats with severe stromal necrosis Herpes simplex keratitis[J]. Chin J Nosocomiology, 2020, 30(13):2027-2032. doi:10.11816/cn.ni.2020-191504.
[29] 周洪伟. P物质在小鼠单纯疱疹病毒性角膜炎复发中的作用研究[D]. 武汉: 武汉大学, 2016. ZHOU Hongwei. Experimental study on substance P inhibiting Herpes simplex keratitis recurrence in mouse[D]. Wuhan: Wuhan University, 2016.
[30] Riccio RE, Park SJ, Longnecker R, et al. Characterization of sex differences in ocular herpes simplex virus 1 infection and herpes stromal keratitis pathogenesis of wild-type and herpesvirus entry mediator knockout mice[J]. mSphere, 2019, 4(3): e00322-19. doi:10.1128/mSphere.00322-19(2019).
[31] Dridi S, Richerioux N, Gonzalez Suarez CE, et al. A mutation in the UL24 gene abolishes expression of the newly identified UL24.5 protein of Herpes simplex virus 1 and leads to an increase inpathogenicity in mice[J]. J Virol, 2018, 92(20):e00671-e00618. doi:10.1128/JVI.00671-18.
[32] Davido DJ, Tu EM, Wang H, et al. Attenuated Herpes simplex virus 1(HSV-1)expressing a mutant form of ICP6 stimulates a strong immune response that protects mice against HSV-1-inducedcorneal disease[J]. J Virol, 2018, 92(17):92:e01036-18. doi:10.1128/jvi.01036-18.
[33] Neelam S, Niederkorn JY. Pathobiology and immunobiology of keratitis: insights from animal models[J]. Yale J Biol Med, 2017, 90(2):261-268.
[34] Alizadeh H, Neelam S, Niederkorn JY. Effect of immunization with the mannose-induced acanthamoeba protein and acanthamoeba plasminogen activator in mitigating acanthamoeba keratitis[J]. Invest Ophthalmol Vis Sci, 2007, 48(12):5597. doi:10.1167/iovs.07-0407.
[35] Alizadeh H, Neelam S, Hurt M, et al. Role of contact lens wear, bacterial flora, and mannose-induced pathogenic protease in the pathogenesis of amoebic keratitis[J]. Infect Immun, 2005, 73(2):1061-1068. doi:10.1128/IAI.73.2.1061-1068.2005.
[36] Nakagawa H, Hattori T, Koike N, et al. Investigation of the role of bacteria in the development of Acanthamoeba keratitis[J]. Cornea, 2015, 34(10):1308-1315.doi:10.1097/ICO.0000000000000541.
[37] He YG, McCulley JP, Alizadeh H, et al. A pig model of Acanthamoeba keratitis: transmission via contaminated contact lenses[J]. Invest Ophthalmol Vis Sci, 1992, 33(1):126-133.
[38] Ren MY, Wu XY. Evaluation of three different methods to establish animal models of Acanthamoeba keratitis[J]. Yonsei Med J, 2010, 51(1):121-127. doi:10.3349/ymj.2010.51.1.121.
[39] Ge Z, Qing Y, Zicheng S, et al. Rapid and sensitive diagnosis of Acanthamoeba keratitis by loop-mediated isothermal amplification[J]. Clin Microbiol Infect, 2013, 19(11):1042-1048. doi:10.1111/1469-0691.12149.
[40] Alizadeh H, Tripathi T, Abdi M, et al. Pathogenic strains of Acanthamoeba are recognized by TLR4 and initiated inflammatory responses in the cornea[J]. PLoS One, 2014, 9(3):e92375.doi:10.1371/journal.pone.0092375.
[41] Polat ZA, Obwaller A, Vural A, et al. Efficacy of miltefosine for topical treatment of Acanthamoeba keratitis in Syrian hamsters[J]. Parasitol Res, 2012, 110(2):515-520. doi:10.1007/s00436-011-2515-0.
[42] Alekseev O, Tran AH, Azizkhan-Clifford J. Ex vivo organotypic corneal model of acute epithelial Herpes simplex virus type I infection[J]. J Vis Exp, 2012(69):e3631. doi:10.3791/3631.
[43] Yadavalli T, Agelidis A, Jaishankar D, et al. Targeting Herpes simplex virus-1 gD by a DNA aptamer can be an effective new strategy to curb viral infection[J]. Mol Ther Nucleic Acids, 2017, 9:365-378. doi:10.1016/j.omtn.2017.10.009.
[44] Agelidis AM, Hadigal SR, Jaishankar D, et al. Viral activation of heparanase drives pathogenesis of Herpes simplex virus-1[J]. Cell Rep, 2017, 20(2):439-450. doi:10.1016/j.celrep.2017.06.041.
[45] Richard NR, Anderson JA, Weiss JL, et al. Air/liquid corneal organ culture: a light microscopic study[J]. Curr Eye Res, 1991, 10(8):739-749. doi:10.3109/02713689109013868.
[46] Harman RM, Bussche L, Ledbetter EC, et al. Establishment and characterization of an air-liquid canine corneal organ culture model to study acute Herpes keratitis[J]. J Virol, 2014, 88(23):13669-13677. doi:10.1128/JVI.02135-14.
[47] 王宇静, 杨燕宁. 人角膜上皮细胞体外培养的研究进展[J]. 眼科新进展, 2017,37(4):384-387,391. doi:10.13389/j.cnki.rao.2017.0098. WANG Yujing, YANG Yanning. Research advances in cultured human corneal epithelium cells in vitro[J]. Recent Adv Ophthalmol, 2017, 37(4):384-387,391. doi:10.13389/j.cnki.rao.2017.0098.
[48] 曲建秋. 甘露糖结合凝集素与Dectin-1、TLR2在真菌性角膜炎中的相互作用[D]. 青岛: 青岛大学, 2015.
[49] Wei C, Zhu MF, Petroll WM, et al. Pseudomonas aeruginosa infectious keratitis in a high oxygen transmissible rigid contact lens rabbit model[J]. Invest Ophthalmol Vis Sci, 2014, 55(9):5890-5899. doi:10.1167/iovs.14-14235.
[50] Chucair-Elliott AJ, Zheng M, Carr DJ. Degeneration and regeneration of corneal nerves in response to HSV-1 infection[J]. Invest Ophthalmol Vis Sci, 2015, 56(2):1097-1107. doi:10.1167/iovs.14-15596.
[1] HU Jindong, LIU Xinquan. Research progress of dry eye animal model. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 109-113.
[2] LI Lizhu, WU Qing, YI Xin, TIAN Li. Research progress on the animal model of allergic rhinitis in traditional Chinese medicine. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(3): 60-63.
[3] WANG Zhiyuan, ZHANG Gehua. Establishment and application of model of chronic rhinosinusitis in mice [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(5): 76-78.
[4] SHUAI Shao-shuai, HE Xia-yi, NING Hong- zhu, LUO You-qiong, LIANG Si-min. Clinical observation of corneal stronmal layer injection in the treatment of fungal keratitis [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2014, 28(5): 76-78.
[5] HE Jing-chun1, RUAN Qing-wei2, HAN Miao-miao1, JIN Bin1, LI Ke-yong1, DONG Pin1. Establishment of sensorineural deafness model in C57 mice by cisplatin [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2014, 28(1): 1-5.
[6] QUAN Shi-ming1, PENG Ben-gang1, GAO Zhi-qiang2. Establishment and morphological assessment of the T-cell immune deficiency  mouse model with facial nerve axotomy [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2010, 24(6): 5-9.
[7] DING Jian, YANG Hua, ZHANG Nian-Kai. Model establishment of optic nerve decompression surgery in cats [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2009, 23(3): 75-.
[8] LIU Zhonglu, WANG Yan, LI Yanzhong
. Animal model of obstructive sleep apnea syndrome in rats
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2009, 23(2): 31-33 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 84 -87 .
[2] NIU Shanli,CHAI Maowen,LI Zhenxiu . Endoscopic rhinoplasty of inferior turbinate in 60 patients with chronic hypertrophic rhinitis[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 16 -18 .
[3] MENG Qing-guo,LU Yong-tian,FAN Xian-liang .

Association of killer cell immunoglobulin-like receptor gene polymorphisms with nasopharyngeal carcinoma

[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 196 -199 .
[4] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 199 -199 .
[5] WAN Li-jia,LU Hai-tao,JIANG Yi-dao,LIU Hui,LI Qin,SHE La-zhi . Effect of H-uvulopalatopharyngoplasty on obstructive sleep apnea
hypopnea syndrome
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 204 -205 .
[6] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 222 -224 .
[7] JI Xiao-bin,DENG Jia-de,ZANG Lin-quan,WANG Lei,XIE Jun . Blood histamine in guinea pigs with allergic rhinitis[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 228 -230 .
[8] XIANG Deng,LU Yong-tian,SUN Huan-ji . Endoscopic repair for cerebrospinal fluid rhinorrhea in 19 cases and a literature review [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 234 -236 .
[9] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 253 -257 .
[10]
YIN Guo-hua,ZHONG Xiao . Long-term effect of laser reduction on lingua adenoids
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 280 -282 .