Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2020, Vol. 34 ›› Issue (4): 80-86.doi: 10.6040/j.issn.1673-3770.1.2020.049
Previous Articles Next Articles
To analyze the changes in the neurons of the retinal inner nuclear layer and in the visual function of rat models with ocular ischemia syndrome. MethodsAt the age of 8 weeks, Brown-Norway rats underwent bilateral common carotid artery occlusion(BCCAO)surgery as the model of ocular ischemia syndrome. After 1 and 2 months since the model was established, the retinal thickness was measured in eyeball slices. By applying immunofluorescence, changes in the morphology and synaptic plasticity of horizontal and bipolar cells in the retinal inner nuclear layer were observed. Changes in the visual function of rats were detected by electrophysiology. ResultsWith prolongation of the retinal ischemia time, the number of cells in each retinal layer decreased, and thicknesses of the inner and outer plexiform layers also decreased. Dendrites of horizontal and bipolar cells decreased or disappeared. The density of presynaptic membrane marker synaptophysin decreased. After 2 months since the modeling, the somatic positions of horizontal and bipolar cells migrated from the outer side to the basal side of the inner nuclear layer and formed new neurites. Synaptophysin was randomly distributed in the outer nuclear layer. Electrophysiology showed markedly reduced a- and b-wave amplitudes in BCCAO rats, indicating that the visual function of the BCCAO rats was impaired, and various retinal cell functions were affected. ConclusionIn rat models with ocular ischemia syndrome, the thickness of retinal layers and number of retinal cells decreased. Two months after the model was established, horizontal and bipolar cells migrated, and synaptic rewiring occurred, resulting in retinal remodeling.
[1] | Hata M, Ikeda HO, Kikkawa C, et al. KUS121, a VCP modulator, attenuates ischemic retinal cell death via suppressing endoplasmic Reticulum stress[J]. Sci Rep, 2017, 7: 44873. doi:10.1038/srep44873. |
[2] | Nivison-Smith L, Khoo P, Acosta ML, et al. Vinpocetine protects inner retinal neurons with functional NMDA glutamate receptors against retinal ischemia[J]. Exp Eye Res, 2018, 167: 1-13. doi:10.1016/j.exer.2017.10.008. |
[3] | Schmid H, Renner M, Dick HB, et al. Loss of inner retinal neurons after retinal ischemia in rats[J]. Invest Ophthalmol Vis Sci, 2014, 55(4): 2777-2787. doi:10.1167/iovs.13-13372. |
[4] | Zeng HY, Green WR, Tso MO. Microglial activation in human diabetic retinopathy[J]. Arch Ophthalmol, 2008, 126(2): 227-232. doi:10.1001/archophthalmol.2007.65. |
[5] | Adamis AP, Berman AJ. Immunological mechanisms in the pathogenesis of diabetic retinopathy[J]. Semin Immunopathol, 2008, 30(2): 65-84. doi:10.1007/s00281-008-0111-x. |
[6] | Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy[J]. Exp Diabetes Res, 2007, 2007: 95103. doi:10.1155/2007/95103. |
[7] | Palmhof M, Frank V, Rappard P, et al. From ganglion cell to photoreceptor layer: timeline of deterioration in a rat ischemia/reperfusion model[J]. Front Cell Neurosci, 2019, 13: 174. doi:10.3389/fncel.2019.00174. |
[8] | Cai M, Zhang XD, Li YY, et al. Toll-like receptor 3 activation drives the inflammatory response in oxygen-induced retinopathy in rats[J]. Br J Ophthalmol, 2015, 99(1): 125-132. doi:10.1136/bjophthalmol-2014-305690. |
[9] | Mendrinos E, Machinis TG, Pournaras CJ. Ocular ischemic syndrome[J]. Surv Ophthalmol, 2010, 55(1): 2-34. doi:10.1016/j.survophthal.2009.02.024. |
[10] | Brown GC, Magargal LE. The ocular ischemic syndrome. Clinical, fluorescein angiographic and carotid angiographic features[J]. Int Ophthalmol, 1988, 11(4): 239-251. doi:10.1007/BF00131023. |
[11] | Malhotra R, Gregory-Evans K. Management of ocular ischaemic syndrome[J]. Br J Ophthalmol, 2000, 84(12): 1428-1431. doi:10.1136/bjo.84.12.1428. |
[12] | Slakter JS, Spertus AD, Weissman SS and Henkind P. An experimental model of carotid artery occlusive disease[J]. Am J Ophthalmol. 1984,97:168-172. doi: 10.1016/s0002-9394(14)76086-6. |
[13] | Huang YX, Fan SC, Li J, et al. Bilateral common carotid artery occlusion in the rat as a model of retinal ischaemia[J]. Neuroophthalmology, 2014, 38(4): 180-188. doi:10.3109/01658107.2014.908928. |
[14] | Lavinsky D, Arterni NS, Achaval M, et al. Chronic bilateral common carotid artery occlusion: a model for ocular ischemic syndrome in the rat[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2006, 244(2): 199-204. doi:10.1007/s00417-005-0006-7. |
[15] | Li ZY, Zeng YX, Chen X, et al. Neural stem cells transplanted to the subretinal space of rd1 mice delay retinal degeneration by suppressing microglia activation[J]. Cytotherapy, 2016, 18(6): 771-784. doi:10.1016/j.jcyt.2016.03.001. doi: 10.1186/s13287-016-0451-8. |
[16] | Chen X, Chen Z, Li Z, et al.. Grafted c-kit+/SSEA1- eye-wall progenitor cells delay retinal degeneration in mice by regulating neural plasticity and forming new graft-to-host synapses[J]. Stem Cell Res Ther, 2016, 7:191. doi: 10.1186/s13287-016-0451-8. |
[17] | Christiansen AT, Sørensen NB, Haanes KA, et al. Neuropeptide Y treatment induces retinal vasoconstriction and causes functional and histological retinal damage in a porcine ischaemia model[J]. Acta Ophthalmol, 2018, 96(8): 812-820. doi:10.1111/aos.13806. |
[18] | Palmhof M, Lohmann S, Schulte D, et al. Fewer functional deficits and reduced cell death after ranibizumab treatment in a retinal ischemia model[J]. Int J Mol Sci, 2018, 19(6): E1636. doi:10.3390/ijms19061636. |
[19] | Kim SY, Shim MS, Kim KY, et al. Inhibition of cyclophilin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury[J]. Cell Death Dis, 2014, 5: e1105. doi:10.1038/cddis.2014.80. |
[20] | Wei YH, Gong JS, Xu ZH, et al. Nrf2 promotes reparative angiogenesis through regulation of NADPH oxidase-2 in oxygen-induced retinopathy[J]. Free Radic Biol Med, 2016, 99: 234-243. doi:10.1016/j.freeradbiomed.2016.08.013. |
[21] | Reid E, Guduric-Fuchs J, O'Neill CL, et al. Preclinical evaluation and optimization of a cell therapy using human cord blood-derived endothelial colony-forming cells for ischemic retinopathies[J]. Stem Cells Transl Med, 2018, 7(1): 59-67. doi:10.1002/sctm.17-0187. |
[22] | Joly S, Dejda A, Rodriguez L, et al. Nogo-A inhibits vascular regeneration in ischemic retinopathy[J]. Glia, 2018, 66(10): 2079-2093. doi:10.1002/glia.23462. |
[23] | Crespo-Garcia S, Reichhart N, Skosyrski S, et al. Individual and temporal variability of the Retina after chronic bilateral common carotid artery occlusion(BCCAO)[J]. PLoS One, 2018, 13(3): e0193961. doi:10.1371/journal.pone.0193961. |
[24] | Pfeiffer RL, Marc RE, Kondo M, et al. Müller cell metabolic Chaos during retinal degeneration[J]. Exp Eye Res, 2016, 150: 62-70. doi:10.1016/j.exer.2016.04.022. |
[25] | Jones BW, Kondo M, Terasaki H, et al. Retinal remodeling[J]. Jpn J Ophthalmol, 2012, 56(4): 289-306. doi:10.1007/s10384-012-0147-2. |
No related articles found! |
|