Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (2): 132-139.doi: 10.6040/j.issn.1673-3770.0.2023.279

• Review • Previous Articles     Next Articles

Advances in the mechanisms of nervous system plasticity in vestibular compensation

WANG Xuezhi1, YANG Ling1, HUANG Yingxi1, LYU Ping2   

  1. 1. Department of Otorhinolaryngology & Head and Neck Surgery, North Sichuan Medical College Affiliated Hospital, Nanchong 637002, Sichuan, China2. North Sichuan Medical University, School of Clinical Medicine, Nanchong 637002, Sichuan, China
  • Published:2025-03-26

Abstract: Vestibular disorders may cause vertigo, balance disturbance, nausea, vomiting, and other symptoms that can adversely affect an individual's quality of life and health. When peripheral vestibular inputs are partially or completely lost, a phenomenon known as vestibular compensation occurs in the hours and days following the injury. Vestibular compensation is a neuroplastic process divided into a rapid, complete, static compensation and a longer-term, incomplete, dynamic compensation. Static compensation primarily occurs through electrophysiological rebalancing of the bilateral vestibular nuclei, whereas dynamic compensation involves three mechanisms: vestibular adaptation, substitution, and acculturation, all of which participate in the overall reorganization of systems throughout the brain. In recent decades, studies have investigated the mechanisms of neuroplasticity in vestibular compensation. Static compensation is attributed to a series of changes in the vestibular nuclei, including molecular alterations, cell proliferation and excitability, synaptic plasticity and transmission, and neural circuit projections. In contrast, dynamic compensation involves reorganization throughout the whole brain. In this paper, we briefly summarize the research progress into neuroplasticity mechanisms in vestibular compensation, providing a basis for improvement of treatment strategies in patients with vestibular disorders in China.

Key words: Vestibular diseases, Vestibular compensation, Dynamic symptoms, Static symptoms, Dynamic compensation, Static compensation

CLC Number: 

  • R764
[1] Zwergal A, Dieterich M. Vertigo and dizziness in the emergency room[J]. Curr Opin Neurol, 2020, 33(1): 117-125. doi:10.1097/WCO.0000000000000769
[2] Chow MR, Ayiotis AI, Schoo DP, et al. Posture, gait, quality of life, and hearing with a vestibular implant[J]. N Engl J Med, 2021, 384(6): 521-532. doi:10.1056/NEJMoa2020457
[3] Lopez C. A neuroscientific account of how vestibular disorders impair bodily self-consciousness[J]. Front Integr Neurosci, 2013, 7: 91. doi:10.3389/fnint.2013.00091
[4] Tighilet B, Bordiga P, Cassel R, et al. Peripheral vestibular plasticity vs central compensation: evidence and questions[J]. J Neurol, 2019, 266(1): 27-32. doi:10.1007/s00415-019-09388-9
[5] 林晨珏, 席淑新, 王璟. 前庭康复训练对前庭外周性眩晕患者眩晕残障症状的改善作用[J]. 中华医学杂志, 2020, 100(32): 2503-2506. doi:10.3760/cma.j.cn112137-20191202-02621 LIN Chenjue, XI Shuxin, WANG Jing. The effects of vestibular rehabilitation training on the symptoms of vertigo and disability in patients with vestibular peripheral vertigo[J]. National Medical Journal of China, 2020, 100(32): 2503-2506. doi:10.3760/cma.j.cn112137-20191202-02621
[6] Mao DH, He ZM, Xuan W, et al. Effect and mechanism of BDNF/TrkB signaling on vestibular compensation[J]. Bioengineered, 2021, 12(2): 11823-11836. doi:10.1080/21655979.2021.1997565
[7] Dutheil S, Watabe I, Sadlaoud K, et al. BDNF signaling promotes vestibular compensation by increasing neurogenesis and remodeling the expression of potassium-chloride cotransporter KCC2 and GABAAReceptor in the vestibular nuclei[J]. J Neurosci, 2016, 36(23): 6199-6212. doi:10.1523/jneurosci.0945-16.2016
[8] Rastoldo G, Tighilet B. Thyroid axis and vestibular physiopathology: from animal model to pathology[J]. Int J Mol Sci, 2023, 24(12): 9826. doi:10.3390/ijms24129826
[9] Guillaume R, Emna M, Nada E, et al. L-thyroxine improves vestibular compensation in a rat model of acute peripheral vestibulopathy: cellular and behavioral aspects[J]. Cells, 2022, 11(4): 684. doi: 10.3390/CELLS11040684
[10] Gliddon CM, Smith PF, Darlington CL. Interaction between the hypothalamic—pituitary—adrenal axis and behavioural compensation following unilateral vestibular deafferentation[J]. Acta Oto Laryngol, 2003, 123(9): 1013-1021. doi:10.1080/00016480310000520
[11] Tighilet B, Manrique C, Lacour M. Stress axis plasticity during vestibular compensation in the adult cat[J]. Neuroscience, 2009, 160(4): 716-730. doi:10.1016/j.neuroscience.2009.02.070
[12] Tighilet B, Brezun JM, Dit Duflo Sylvie G, et al. New neurons in the vestibular nuclei complex after unilateral vestibular neurectomy in the adult cat[J]. Eur J Neuroscience, 2007, 25(1): 47-58. doi:10.1111/j.1460-9568.2006.05267.x
[13] Rastoldo G, El Mahmoudi N, Marouane E, et al. Adult and endemic neurogenesis in the vestibular nuclei after unilateral vestibular neurectomy[J]. Prog Neurobiol, 2021, 196: 101899. doi:10.1016/j.pneurobio.2020.101899
[14] Li J, Wang PJ, Wang LY, et al. Redistribution of the astrocyte phenotypes in the medial vestibular nuclei after unilateral labyrinthectomy[J]. Front Neurosci, 2023, 17: 1146147. doi:10.3389/fnins.2023.1146147
[15] Campos Torres A, Vidal PP, de Waele C. Evidence for a microglial reaction within the vestibular and cochlear nuclei following inner ear lesion in the rat[J]. Neuroscience, 1999, 92(4): 1475-1490. doi:10.1016/S0306-4522(99)00078-0
[16] El Mahmoudi N, Rastoldo G, Marouane E, et al. Breaking a dogma: acute anti-inflammatory treatment alters both post-lesional functional recovery and endogenous adaptive plasticity mechanisms in a rodent model of acute peripheral vestibulopathy[J]. J Neuroinflammation, 2021, 18(1): 183. doi:10.1186/s12974-021-02222-y
[17] Zwergal A, Günther L, Brendel M, et al. In vivo imaging of glial activation after unilateral labyrinthectomy in the rat: a[18F] GE180-PET study[J]. Front Neurol, 2017, 8: 665. doi:10.3389/fneur.2017.00665
[18] Jurga AM, Paleczna M, Kuter KZ. Overview of general and discriminating markers of differential microglia phenotypes[J]. Front Cell Neurosci, 2020, 14: 198. doi:10.3389/fncel.2020.00198
[19] Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017, 541(7638): 481-487. doi:10.1038/nature21029
[20] Song GJ, Suk K. Pharmacological modulation of functional phenotypes of microglia in neurodegenerative diseases[J]. Front Aging Neurosci, 2017, 9: 139. doi:10.3389/fnagi.2017.00139
[21] El Mahmoudi N, Marouane E, Rastoldo G, et al. Microglial dynamics modulate vestibular compensation in a rodent model of vestibulopathy and condition the expression of plasticity mechanisms in the deafferented vestibular nuclei[J]. Cells, 2022, 11(17): 2693. doi:10.3390/cells11172693
[22] 薛伟轩, 李潜啸, 张洋浔, 等. 前庭代偿中双侧前庭内侧核对输入刺激响应的敏感性变化及其离子机制[J]. 生理学报, 2022, 74(2): 135-144. doi:10.13294/j.aps.2022.0023 XUE Weixuan, LI Qianxiao, ZHANG Yangxun, et al. Changes in sensitivity of bilateral medial vestibular nuclear neurons responding to input stimuli during vestibular compensation and the underlying ionic mechanism[J]. Acta Physiologica Sinica, 2022, 74(2): 135-144. doi:10.13294/j.aps.2022.0023
[23] Beraneck M, Idoux E, Uno A, et al. Unilateral labyrinthectomy modifies the membrane properties of contralesional vestibular neurons[J]. J Neurophysiol, 2004, 92(3): 1668-1684. doi:10.1152/jn.00158.2004
[24] Beraneck M, Hachemaoui M, Idoux E, et al. Long-term plasticity of ipsilesional medial vestibular nucleus neurons after unilateral labyrinthectomy[J]. J Neurophysiol, 2003, 90(1): 184-203. doi:10.1152/jn.01140.2002
[25] Tighilet B, Leonard J, Mourre C, et al. Apamin treatment accelerates equilibrium recovery and gaze stabilization in unilateral vestibular neurectomized cats: cellular and behavioral aspects[J]. Neuropharmacology, 2019, 144: 133-142. doi:10.1016/j.neuropharm.2018.10.029
[26] Zhou LQ, Zhou W, Zhang SL, et al. BDNF signaling in the rat cerebello-vestibular pathway during vestibular compensation: BDNF signaling in vestibular compensation[J]. FEBS J, 2015, 282(18): 3579-3591. doi:10.1111/febs.13360
[27] Cassel R, Wiener-Vacher S, El Ahmadi A, et al. Reduced balance restoration capacities following unilateral vestibular insult in elderly mice[J]. Front Neurol, 2018, 9: 462. doi:10.3389/fneur.2018.00462
[28] Gaboyard-Niay S, Travo C, Saleur A, et al. Correlation between afferent rearrangements and behavioral deficits after local excitotoxic insult in the mammalian vestibule: a rat model of vertigo symptoms[J]. Dis Model Mech, 2016, 9(10): 1181-1192. doi:10.1242/dmm.024521
[29] Rozycka A, Liguz-Lecznar M. The space where aging acts: focus on the GABAergic synapse[J]. Aging Cell, 2017, 16(4): 634-643. doi:10.1111/acel.12605
[30] de Dieuleveult AL, Siemonsma PC, van Erp JBF, et al. Effects of aging in multisensory integration: a systematic review[J]. Front Aging Neurosci, 2017, 9: 80. doi:10.3389/fnagi.2017.00080
[31] Chen ZP, Zhang XY, Peng SY, et al. Histamine H1 receptor contributes to vestibular compensation[J]. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 2019, 39(3):420-433. doi: 10.1523/JNEUROSCI.1350-18.2018
[32] Deveze A, Bernard-Demanze L, Xavier F, et al. Vestibular compensation and vestibular rehabilitation. current concepts and new trends[J]. Neurophysiol Clinique/clinical Neurophysiol, 2014, 44(1): 49-57. doi:10.1016/j.neucli.2013.10.138
[33] Lasker DM, Hullar TE, Minor LB. Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. III. responses after labyrinthectomy[J]. J Neurophysiol, 2000, 83(5): 2482-2496. doi:10.1152/jn.2000.83.5.2482
[34] Clendaniel RA, Lasker DM, Minor LB. Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. IV. Responses after spectacle-induced adaptation[J]. J Neurophysiol, 2001, 86(4): 1594-1611. doi:10.1152/jn.2001.86.4.1594
[35] Striteska M, Valis M, Chrobok V, et al. Head-shaking-induced nystagmus reflects dynamic vestibular compensation: a 2-year follow-up study[J]. Front Neurol, 2022, 13: 949696. doi:10.3389/fneur.2022.949696
[36] Beraneck M, McKee JL, Aleisa M, et al. Asymmetric recovery in cerebellar-deficient mice following unilateral labyrinthectomy[J]. J Neurophysiol, 2008, 100(2): 945-958. doi:10.1152/jn.90319.2008
[37] Cullen KE. Vestibular processing during natural self-motion: implications for perception and action[J]. Nat Rev Neurosci, 2019, 20(6): 346-363. doi:10.1038/s41583-019-0153-1
[38] Argyropoulos GPD. The cerebellum, internal models and prediction in 'non-motor' aspects of language: a critical review[J]. Brain Lang, 2016, 161: 4-17. doi:10.1016/j.bandl.2015.08.003
[39] Prestori F, Mapelli L, D'Angelo E. Diverse neuron properties and complex network dynamics in the cerebellar cortical inhibitory circuit[J]. Front Mol Neurosci, 2019, 12: 267. doi:10.3389/fnmol.2019.00267
[40] Liu D, Wang J, Zhou LQ, et al. Differential modulation of cerebellar flocculus unipolar brush cells during vestibular compensation[J]. Biomedicines, 2023, 11(5): 1298. doi:10.3390/biomedicines11051298
[41] Luque NR, Naveros F, Sheynikhovich D, et al. Computational epidemiology study of homeostatic compensation during sensorimotor aging[J]. Neural Netw, 2022, 146: 316-333. doi:10.1016/j.neunet.2021.11.024
[42] 凌霞译, 朱扬译, 王璟, 等. 双侧前庭病诊断标准: Bárány学会前庭疾病分类委员会共识[J]. 神经损伤与功能重建, 2019, 14(12): 595-602. doi: 10.16780/j.cnki.sjssgncj.2019.12.001 LING Xiayi, ZHU Yangyi, WANG Jing, et al. Bilateral Vestibulopathy: diagnostic criteria Consensus document of the Classification Committee of the Bárány Society[J]. Neural Injury and Functional Reconstruction, 2019, 14(12): 595-602. doi: 10.16780/j.cnki.sjssgncj.2019.12.001
[43] Kai R, Takahashi K, Tainaka K, et al. Cerebrocortical activation following unilateral labyrinthectomy in mice characterized by whole-brain clearing: implications for sensory reweighting[J]. Sci Rep, 2022, 12(1): 15424. doi:10.1038/s41598-022-19678-4
[44] Grosch M, Lindner M, Bartenstein P, et al. Dynamic whole-brain metabolic connectivity during vestibular compensation in the rat[J]. NeuroImage, 2021, 226: 117588. doi:10.1016/j.neuroimage.2020.117588
[45] Wagner AR, Schubert M. Evidence a shared mechanism mediates ipsi- and contra-lesional compensatory saccades and gait after unilateral vestibular deafferentation[J]. J Neurophysiol, 2020, 123(4): 1486-1495. doi: 10.1152/jn.00585.2019
[46] 张洋浔, 张潇洋, 容永豪, 等. 前庭代偿机制与前庭康复治疗[J]. 中华医学杂志, 2021, 101(26): 2095-2098. doi: 10.3760/cma.j.cn112137-20201214-03357 ZHANG Yangxun, ZHANG Xiaoyang, RONG Yonghao, et al. Vestibular compensation mechanism and vestibular rehabilitation treatment[J]. National Medical Journal of China, 2021, 101(26):2095-2098. doi: 10.3760/cma.j.cn112137-20201214-03357
[47] Si LH, Cui B, Li ZY, et al. Concurrent brain structural and functional alterations in patients with chronic unilateral vestibulopathy[J]. Quant Imaging Med Surg, 2022, 12(6): 3115-3125. doi:10.21037/qims-21-655
[48] Emilie L, Naïma D, Gareth EM, et al. The cognitive-vestibular compensation hypothesis: how cognitive impairments might be the cost of coping with Compensation[J]. Front Hum Neurosci, 2021, 15: 732974. doi: 10.3389/FNHUM.2021.732974
[49] Bigelow RT, Agrawal Y. Vestibular involvement in cognition: Visuospatial ability, attention, executive function, and memory[J]. J Vestib Res, 2015, 25(2): 73-89. doi:10.3233/VES-150544
[50] 祁晓媛, 宋宁, 顾平, 等. 前庭康复机制及治疗的研究进展[J]. 中国全科医学, 2022, 25(11): 1399-1405. doi: 10.12114/j.issn.1007-9572.2021.01.104 QI Xiaoyuan, SONG Ning, GU Ping, et al. Research advances in vestibular rehabilitation mechanism and treatment[J]. Chinese General Practice, 2022, 25(11): 1399-1405. doi: 10.12114/j.issn.1007-9572.2021.01.104
[51] 李佳威, 刘晓阳, 杨星昱, 等. 重复经颅磁刺激治疗慢性前庭综合征疗效评价[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 7-10. doi: 10.6040/j.issn.1673-3770.0.2020.060 LI Jiawei, LIU Xiaoyang, YANG Xingyu, et al. Effect of repetitive transcranial magnetic stimulation on chronic vestibular syndrome[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(1): 7-10. doi: 10.6040/j.issn.1673-3770.0.2020.060
[1] . Therapeutic effectiveness of 75 cases of retrolabyrinthine vestibular neurectomy for intractable Menieres disease [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(5): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(2): 116 -118 .
[2] ZHOU Zi-ning,JIN Guo-wei . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(5): 462 -465 .
[3] XU Sainan,YANG Lei . Apoptosis of epithelial cells in nasal polyps promoted by erythromycin[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 27 -29 .
[4] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 94 -95 .
[5] LIU Lian-he . Treatment of deep neck abscess in 37 cases[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(2): 180 -181 .
[6] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 227 -227 .
[7] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 248 -249 .
[8] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 258 -259 .
[9] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 259 -259 .
[10] SUN Yan,ZHANG Qing-quan,ZHANG Hua,SONG Xi-cheng,ZHAO Li-min,WANG Yan,JIANG Shao-hong,WANG Qiang . Heterogenerty (cattle) acellular dermal matrix repairing mucosa in otolaryngology reconstruction surgeries[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(4): 316 -319 .