Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (4): 93-99.doi: 10.6040/j.issn.1673-3770.0.2024.499
• Research Progress • Previous Articles Next Articles
FU Lijun, WANG Haiyang, WANG Yuqi, ZOU Yuhao, ZOU Jian
CLC Number:
| [1] | Padayachee Y, Flicker S, Linton S, et al. Review: the nose as a route for therapy. part 2 immunotherapy[J]. Front Allergy, 2021, 2: 668781. doi:10.3389/falgy.2021.668781 |
| [2] | Bernasconi V, Norling K, Bally M, et al. Mucosal vaccine development based on liposome technology[J]. J Immunol Res, 2016, 2016: 5482087. doi:10.1155/2016/5482087 |
| [3] | Torika N, Asraf K, Cohen H, et al. Intranasal telmisartan ameliorates brain pathology in five familial Alzheimer's disease mice[J]. Brain Behav Immun, 2017, 64: 80-90. doi:10.1016/j.bbi.2017.04.001 |
| [4] | Lycke N. Recent progress in mucosal vaccine development: potential and limitations[J]. Nat Rev Immunol, 2012, 12(8): 592-605. doi:10.1038/nri3251 |
| [5] | Xu HY, Cai L, Hufnagel S, et al. Intranasal vaccine: Factors to consider in research and development[J]. Int J Pharm, 2021, 609: 121180. doi:10.1016/j.ijpharm.2021.121180 |
| [6] | Kastenschmidt JM, Sureshchandra S, Wagar LE. Leveraging human immune organoids for rational vaccine design[J]. Trends Immunol, 2023, 44(12): 938-944. doi:10.1016/j.it.2023.10.008 |
| [7] | Samara P, Athanasopoulos M, Athanasopoulos I. Unveiling the enigmatic adenoids and tonsils: exploring immunology, physiology, microbiome dynamics, and the transformative power of surgery[J]. Microorganisms, 2023, 11(7): 1624. doi:10.3390/microorganisms11071624 |
| [8] | Zhang Y, Garcia-Ibanez L, Toellner KM. Regulation of germinal center B-cell differentiation[J]. Immunol Rev, 2016, 270(1): 8-19. doi:10.1111/imr.12396 |
| [9] | Aljeraisi TM, Alomar SY, Mahallawi WH. BCG vaccine-induced mucosal humoral immunity in human nasal associated lymphoid tissue[J]. J King Saud Univ Sci, 2023, 35(6): 102773. doi:10.1016/j.jksus.2023.102773 |
| [10] | Sarmiento Varon L, De Rosa J, Machicote A, et al. Characterization of tonsillar IL10 secreting B cells and their role in the pathophysiology of tonsillar hypertrophy[J]. Sci Rep, 2017, 7(1): 11077. doi:10.1038/s41598-017-09689-x |
| [11] | Vinuesa CG, Linterman MA, Yu D, et al. Follicular helper T cells[J]. Annu Rev Immunol, 2016, 34: 335-368. doi:10.1146/annurev-immunol-041015-055605 |
| [12] | Munguía-Fuentes R, Maqueda-Alfaro RA, Chacón-Salinas R, et al. Germinal center cells turning to the dark side: neoplasms of B cells, follicular helper T cells, and follicular dendritic cells[J]. Front Oncol, 2021, 10: 587809. doi:10.3389/fonc.2020.587809 |
| [13] | Crotty S. Follicular helper CD4 T cells(TFH)[J]. Annu Rev Immunol, 2011, 29: 621-663. doi:10.1146/annurev-immunol-031210-101400 |
| [14] | Brandtzaeg P. Potential of nasopharynx-associated lymphoid tissue for vaccine responses in the airways[J]. Am J Respir Crit Care Med, 2011, 183(12): 1595-1604. doi:10.1164/rccm.201011-1783OC |
| [15] | Lycke NY, Bemark M. The regulation of gut mucosal IgA B-cell responses: recent developments[J]. Mucosal Immunol, 2017, 10(6): 1361-1374. doi:10.1038/mi.2017.62 |
| [16] | Kiyono H, Fukuyama S. NALT- versus Peyer's-patch-mediated mucosal immunity[J]. Nat Rev Immunol, 2004, 4(9): 699-710. doi:10.1038/nri1439 |
| [17] | Date Y, Ebisawa M, Fukuda S, et al. NALT M cells are important for immune induction for the common mucosal immune system[J]. Int Immunol, 2017, 29(10): 471-478. doi:10.1093/intimm/dxx064 |
| [18] | Ohno H. Intestinal M cells[J]. J Biochem, 2016, 159(2): 151-160. doi:10.1093/jb/mvv121 |
| [19] | Date Y, Ebisawa M, Fukuda S, et al. NALT M cells are important for immune induction for the common mucosal immune system[J]. Int Immunol, 2017, 29(10): 471-478. doi:10.1093/intimm/dxx064 |
| [20] | Kim SH, Jang YS. Antigen targeting to M cells for enhancing the efficacy of mucosal vaccines[J]. Exp Mol Med, 2014, 46(3): e85. doi:10.1038/emm.2013.165 |
| [21] | Dotiwala F, Upadhyay AK. Next generation mucosal vaccine strategy for respiratory pathogens[J]. Vaccines(Basel), 2023, 11(10): 1585. doi:10.3390/vaccines11101585 |
| [22] | Kok TW, Izzo AA, Costabile M. Intracellular immunoglobulin A(icIgA)in protective immunity and vaccines[J/OL]. Scand J Immunol, 2023, 97(4): e13253. doi:10.1111/sji.13253 |
| [23] | Matsumoto ML. Molecular mechanisms of multimeric assembly of IgM and IgA[J]. Annu Rev Immunol, 2022, 40(1): 221-247. doi:10.1146/annurev-immunol-101320-123742 |
| [24] | Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective-a review[J]. Drug Deliv Transl Res, 2013, 3(1): 42-62. doi:10.1007/s13346-012-0108-9 |
| [25] | Sonvico F, Colombo G, Quarta E, et al. Nasal delivery as a strategy for the prevention and treatment of COVID-19[J]. Expert Opin Drug Deliv, 2023, 20(8): 1115-1130. doi:10.1080/17425247.2023.2263363 |
| [26] | Yusuf H, Kett V. Current prospects and future challenges for nasal vaccine delivery[J]. Hum Vaccin Immunother, 2017, 13(1): 34-45. doi:10.1080/21645515.2016.1239668 |
| [27] | Burgess TH, Murray CK, Bavaro MF, et al. Self-administration of intranasal influenza vaccine: Immunogenicity and volunteer acceptance[J]. Vaccine, 2015, 33(32): 3894-3899. doi:10.1016/j.vaccine.2015.06.061 |
| [28] | Pedersen G, Cox R. The mucosal vaccine quandary: intranasal vs. sublingual immunization against influenza[J]. Hum Vaccin Immunother, 2012, 8(5): 689-693. doi:10.4161/hv.19568 |
| [29] | Vos A, Freuling CM, Hundt B, et al. Oral vaccination of wildlife against rabies: differences among host species in vaccine uptake efficiency[J]. Vaccine, 2017, 35(32): 3938-3944. doi:10.1016/j.vaccine.2017.06.022 |
| [30] | Shrewsbury SB. The upper nasal space: option for systemic drug delivery, mucosal vaccines and “nose-to-brain”[J]. Pharmaceutics, 2023, 15(6): 1720. doi:10.3390/pharmaceutics15061720 |
| [31] | Xu HY, Cai L, Hufnagel S, et al. Intranasal vaccine: Factors to consider in research and development[J]. Int J Pharm, 2021, 609: 121180. doi:10.1016/j.ijpharm.2021.121180 |
| [32] | Riese P, Sakthivel P, Trittel S, et al. Intranasal formulations: promising strategy to deliver vaccines[J]. Expert Opin Drug Deliv, 2014, 11(10): 1619-1634. doi:10.1517/17425247.2014.931936 |
| [33] | Jabbal-Gill I. Nasal vaccine innovation[J]. J Drug Target, 2010, 18(10): 771-786. doi:10.3109/1061186x.2010.523790 |
| [34] | 张佳璐, 张旋旋, 毛群颖, 等. 新型冠状病毒黏膜疫苗研究进展[J]. 中国病毒病杂志, 2023, 13(6): 419-427. doi:10.16505/j.2095-0136.2023.6003 ZHANG Jialu, ZHANG Xuanxuan, MAO Qunying, et al. Research progress on mucosal vaccines for SARS-CoV-2[J]. Chinese Journal of Viral Diseases, 2023, 13(6): 419-427. doi:10.16505/j.2095-0136.2023.6003 |
| [35] | Yuan MJ, Han ZY, Liang Y, et al. mRNA nanodelivery systems: targeting strategies and administration routes[J]. Biomater Res, 2023, 27(1): 90. doi:10.1186/s40824-023-00425-3 |
| [36] | Leal J, Smyth HDC, Ghosh D. Physicochemical properties of mucus and their impact on transmucosal drug delivery[J]. Int J Pharm, 2017, 532(1): 555-572. doi:10.1016/j.ijpharm.2017.09.018 |
| [37] | Zhang H, Liu ZZ, Lihe HY, et al. Intranasal G5-BGG/pDNA vaccine elicits protective systemic and mucosal immunity against SARS-CoV-2 by transfecting mucosal dendritic cells[J]. Adv Healthc Mater, 2024, 13(6): e2303261. doi:10.1002/adhm.202303261 |
| [38] | Park KS, Sun XQ, Aikins ME, et al. Non-viral COVID-19 vaccine delivery systems[J]. Adv Drug Deliv Rev, 2021, 169: 137-151. doi:10.1016/j.addr.2020.12.008 |
| [39] | Arnheim-Dahlstr m L, H llgren J, Weibull CE, et al. Risk of presentation to hospital with epileptic seizures after vaccination with monovalent AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine(Pandemrix): self controlled case series study[J]. BMJ, 2012, 345: e7594. doi:10.1136/bmj.e7594 |
| [40] | Jin Z, Gao S, Cui XL, et al. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines[J]. Int J Pharm, 2019, 572: 118731. doi:10.1016/j.ijpharm.2019.118731 |
| [41] | Lee SJ, Nguyen MT. Recent advances of vaccine adjuvants for infectious diseases[J]. Immune Netw, 2015, 15(2): 51-57. doi:10.4110/in.2015.15.2.51 |
| [42] | Overton ET, Goepfert PA, Cunningham P, et al. Intranasal seasonal influenza vaccine and a TLR-3 agonist, rintatolimod, induced cross-reactive IgA antibody formation against avian H5N1 and H7N9 influenza HA in humans[J]. Vaccine, 2014, 32(42): 5490-5495. doi:10.1016/j.vaccine.2014.07.078 |
| [43] | Jin Z, Gao S, Cui XL, et al. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines[J]. Int J Pharm, 2019, 572: 118731. doi:10.1016/j.ijpharm.2019.118731 |
| [44] | Wu XF, Li W, Rong H, et al. A nanoparticle vaccine displaying conserved epitopes of the preexisting neutralizing antibody confers broad protection against SARS-CoV-2 variants[J]. ACS Nano, 2024, 18(27): 17749-17763. doi:10.1021/acsnano.4c03075 |
| [45] | Dong CH, Zhu WD, Wei L, et al. Enhancing cross-protection against influenza by heterologous sequential immunization with mRNA LNP and protein nanoparticle vaccines[J]. Nat Commun, 2024, 15(1): 5800. doi:10.1038/s41467-024-50087-5 |
| [46] | Robert-Guroff M. Replicating and non-replicating viral vectors for vaccine development[J]. Curr Opin Biotechnol, 2007, 18(6): 546-556. doi:10.1016/j.copbio.2007.10.010 |
| [47] | Matsuda K, Migueles SA, Huang JH, et al. A replication-competent adenovirus-vectored influenza vaccine induces durable systemic and mucosal immunity[J]. J Clin Invest, 2021, 131(5): e140794. doi:10.1172/JCI140794 |
| [48] | Metz C, Haug V, Müller M, et al. Pharmacokinetic and environmental risk assessment of prime-2-CoV, a non-replicating orf virus-based vaccine against SARS-CoV-2[J]. Vaccines(Basel), 2024, 12(5): 492. doi:10.3390/vaccines12050492 |
| [49] | Lucy CF, John DC. Mucosal Immunology[M/OL]. Elsevier, 2015: 1183-1199[2023-12-22]. doi:10.1016/B978-0-12-415847-4.00061-6. |
| [50] | Crothers JW, Norton EB. Recent advances in enterotoxin vaccine adjuvants[J]. Curr Opin Immunol, 2023, 85: 102398. doi:10.1016/j.coi.2023.102398 |
| [51] | Correa VA, Portilho AI, De Gaspari E. Vaccines, adjuvants and key factors for mucosal immune response[J]. Immunology, 2022, 167(2): 124-138. doi:10.1111/imm.13526 |
| [52] | Yin Q, Luo W, Mallajosyula V, et al. A TLR7-nanoparticle adjuvant promotes a broad immune response against heterologous strains of influenza and SARS-CoV-2[J]. Nat Mater, 2023, 22(3): 380-390. doi:10.1038/s41563-022-01464-2 |
| [53] | Leekha A, Saeedi A, Kumar M, et al. An intranasal nanoparticle STING agonist protects against respiratory viruses in animal models[J]. Nat Commun, 2024, 15(1): 6053. doi:10.1038/s41467-024-50234-y |
| [54] | Kenter AL, Richner JM. Tonsil organoids: peering down the throat of human immunity[J]. Trends Immunol, 2021, 42(5): 367-368. doi:10.1016/j.it.2021.03.009 |
| [55] | Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, et al. Long-term expanding human airway organoids for disease modeling[J]. EMBO J, 2019, 38(4): e100300. doi:10.15252/embj.2018100300 |
| [56] | Kenter AL, Richner JM. Tonsil organoids: peering down the throat of human immunity[J]. Trends Immunol, 2021, 42(5): 367-368. doi:10.1016/j.it.2021.03.009 |
| [57] | Kastenschmidt JM, Sureshchandra S, Jain A, et al. Influenza vaccine format mediates distinct cellular and antibody responses in human immune organoids[J]. Immunity, 2023, 56(8): 1910-1926.e7. doi:10.1016/j.immuni.2023.06.019 |
| [58] | Wagar L. Small centers of defense[J]. Science, 2022, 375(6583): 830. doi:10.1126/science.abn9652 |
| [59] | Wagar LE, Salahudeen A, Constantz CM, et al. Modeling human adaptive immune responses with tonsil organoids[J]. Nat Med, 2021, 27(1): 125-135. doi:10.1038/s41591-020-01145-0 |
| [60] | Wagar LE. Human immune organoids: a tool to study vaccine responses[J]. Nat Rev Immunol, 2023, 23(11): 699. doi:10.1038/s41577-023-00956-9 |
| [61] | Takebe T, Zhang BY, Radisic M. Synergistic engineering: organoids meet organs-on-a-chip[J]. Cell Stem Cell, 2017, 21(3): 297-300. doi:10.1016/j.stem.2017.08.016 |
| [1] | DONG Pin, YING Xinjiang, CHEN Xinwei, DENG Zhihong, ZHANG Shaoqiang, YU Ziwei, JIN Bin, SUN Zhenfeng, XIE Jin, ZHU Jiangcai. Preliminary clinical analysis of neo-adjuvant chemotherapy with nimotuzumab plus nedaplatin and fluorouracil in hypopharyngeal squamous cell carcinoma. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(3): 10-14. |
| [2] | XU Yuan-yuan, ZENG Quan, HONG Su-ling, HU Guo-hua. Comparison of neoadjuvant chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: A meta analysis. [J]. J Otolaryngol Ophthalmol Shandong Univ, 2013, 27(5): 8-14. |
|