Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (4): 93-99.doi: 10.6040/j.issn.1673-3770.0.2024.499

• Research Progress • Previous Articles     Next Articles

Immune mechanism and clinical application of the intranasal vaccine in nasopharyngeal-associated lymphoid tissues

FU Lijun, WANG Haiyang, WANG Yuqi, ZOU Yuhao, ZOU Jian   

  1. Department of Otorhinolaryngology & Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu 610044, Sichuan,  China
  • Online:2025-07-20 Published:2025-08-11

Abstract: Intranasal vaccines are used to prevent respiratory infectious diseases by inducing local mucosal and systemic immune responses through action on nasopharyngeal-associated lymphoid tissue and have demonstrated potential for the treatment of brain and autoimmune diseases. Intranasal vaccines combined with new adjuvants and delivery systems can significantly enhance antigen immunogenicity and have shown initial results in the prevention of diseases such as influenza and new coronaviruses. On the contrary, tonsil-like organs, as an emerging three-dimensional experimental model, can accurately mimic the immune microenvironment and provide new tools for vaccine evaluation and design optimization. This article reviews the progress of intranasal vaccine research in clinical applications and analyzes the role of novel adjuvants, delivery systems, and tonsil-like organs in their optimization, with the aim of providing theoretical support for the development and application of intranasal vaccines in the future.

Key words: Nasopharyngeal-related lymphoid tissue, Intranasal vaccine, Adjuvant, Drug delivery system, Tonsil organoids

CLC Number: 

  • R392.3
[1] Padayachee Y, Flicker S, Linton S, et al. Review: the nose as a route for therapy. part 2 immunotherapy[J]. Front Allergy, 2021, 2: 668781. doi:10.3389/falgy.2021.668781
[2] Bernasconi V, Norling K, Bally M, et al. Mucosal vaccine development based on liposome technology[J]. J Immunol Res, 2016, 2016: 5482087. doi:10.1155/2016/5482087
[3] Torika N, Asraf K, Cohen H, et al. Intranasal telmisartan ameliorates brain pathology in five familial Alzheimer's disease mice[J]. Brain Behav Immun, 2017, 64: 80-90. doi:10.1016/j.bbi.2017.04.001
[4] Lycke N. Recent progress in mucosal vaccine development: potential and limitations[J]. Nat Rev Immunol, 2012, 12(8): 592-605. doi:10.1038/nri3251
[5] Xu HY, Cai L, Hufnagel S, et al. Intranasal vaccine: Factors to consider in research and development[J]. Int J Pharm, 2021, 609: 121180. doi:10.1016/j.ijpharm.2021.121180
[6] Kastenschmidt JM, Sureshchandra S, Wagar LE. Leveraging human immune organoids for rational vaccine design[J]. Trends Immunol, 2023, 44(12): 938-944. doi:10.1016/j.it.2023.10.008
[7] Samara P, Athanasopoulos M, Athanasopoulos I. Unveiling the enigmatic adenoids and tonsils: exploring immunology, physiology, microbiome dynamics, and the transformative power of surgery[J]. Microorganisms, 2023, 11(7): 1624. doi:10.3390/microorganisms11071624
[8] Zhang Y, Garcia-Ibanez L, Toellner KM. Regulation of germinal center B-cell differentiation[J]. Immunol Rev, 2016, 270(1): 8-19. doi:10.1111/imr.12396
[9] Aljeraisi TM, Alomar SY, Mahallawi WH. BCG vaccine-induced mucosal humoral immunity in human nasal associated lymphoid tissue[J]. J King Saud Univ Sci, 2023, 35(6): 102773. doi:10.1016/j.jksus.2023.102773
[10] Sarmiento Varon L, De Rosa J, Machicote A, et al. Characterization of tonsillar IL10 secreting B cells and their role in the pathophysiology of tonsillar hypertrophy[J]. Sci Rep, 2017, 7(1): 11077. doi:10.1038/s41598-017-09689-x
[11] Vinuesa CG, Linterman MA, Yu D, et al. Follicular helper T cells[J]. Annu Rev Immunol, 2016, 34: 335-368. doi:10.1146/annurev-immunol-041015-055605
[12] Munguía-Fuentes R, Maqueda-Alfaro RA, Chacón-Salinas R, et al. Germinal center cells turning to the dark side: neoplasms of B cells, follicular helper T cells, and follicular dendritic cells[J]. Front Oncol, 2021, 10: 587809. doi:10.3389/fonc.2020.587809
[13] Crotty S. Follicular helper CD4 T cells(TFH)[J]. Annu Rev Immunol, 2011, 29: 621-663. doi:10.1146/annurev-immunol-031210-101400
[14] Brandtzaeg P. Potential of nasopharynx-associated lymphoid tissue for vaccine responses in the airways[J]. Am J Respir Crit Care Med, 2011, 183(12): 1595-1604. doi:10.1164/rccm.201011-1783OC
[15] Lycke NY, Bemark M. The regulation of gut mucosal IgA B-cell responses: recent developments[J]. Mucosal Immunol, 2017, 10(6): 1361-1374. doi:10.1038/mi.2017.62
[16] Kiyono H, Fukuyama S. NALT- versus Peyer's-patch-mediated mucosal immunity[J]. Nat Rev Immunol, 2004, 4(9): 699-710. doi:10.1038/nri1439
[17] Date Y, Ebisawa M, Fukuda S, et al. NALT M cells are important for immune induction for the common mucosal immune system[J]. Int Immunol, 2017, 29(10): 471-478. doi:10.1093/intimm/dxx064
[18] Ohno H. Intestinal M cells[J]. J Biochem, 2016, 159(2): 151-160. doi:10.1093/jb/mvv121
[19] Date Y, Ebisawa M, Fukuda S, et al. NALT M cells are important for immune induction for the common mucosal immune system[J]. Int Immunol, 2017, 29(10): 471-478. doi:10.1093/intimm/dxx064
[20] Kim SH, Jang YS. Antigen targeting to M cells for enhancing the efficacy of mucosal vaccines[J]. Exp Mol Med, 2014, 46(3): e85. doi:10.1038/emm.2013.165
[21] Dotiwala F, Upadhyay AK. Next generation mucosal vaccine strategy for respiratory pathogens[J]. Vaccines(Basel), 2023, 11(10): 1585. doi:10.3390/vaccines11101585
[22] Kok TW, Izzo AA, Costabile M. Intracellular immunoglobulin A(icIgA)in protective immunity and vaccines[J/OL]. Scand J Immunol, 2023, 97(4): e13253. doi:10.1111/sji.13253
[23] Matsumoto ML. Molecular mechanisms of multimeric assembly of IgM and IgA[J]. Annu Rev Immunol, 2022, 40(1): 221-247. doi:10.1146/annurev-immunol-101320-123742
[24] Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective-a review[J]. Drug Deliv Transl Res, 2013, 3(1): 42-62. doi:10.1007/s13346-012-0108-9
[25] Sonvico F, Colombo G, Quarta E, et al. Nasal delivery as a strategy for the prevention and treatment of COVID-19[J]. Expert Opin Drug Deliv, 2023, 20(8): 1115-1130. doi:10.1080/17425247.2023.2263363
[26] Yusuf H, Kett V. Current prospects and future challenges for nasal vaccine delivery[J]. Hum Vaccin Immunother, 2017, 13(1): 34-45. doi:10.1080/21645515.2016.1239668
[27] Burgess TH, Murray CK, Bavaro MF, et al. Self-administration of intranasal influenza vaccine: Immunogenicity and volunteer acceptance[J]. Vaccine, 2015, 33(32): 3894-3899. doi:10.1016/j.vaccine.2015.06.061
[28] Pedersen G, Cox R. The mucosal vaccine quandary: intranasal vs. sublingual immunization against influenza[J]. Hum Vaccin Immunother, 2012, 8(5): 689-693. doi:10.4161/hv.19568
[29] Vos A, Freuling CM, Hundt B, et al. Oral vaccination of wildlife against rabies: differences among host species in vaccine uptake efficiency[J]. Vaccine, 2017, 35(32): 3938-3944. doi:10.1016/j.vaccine.2017.06.022
[30] Shrewsbury SB. The upper nasal space: option for systemic drug delivery, mucosal vaccines and “nose-to-brain”[J]. Pharmaceutics, 2023, 15(6): 1720. doi:10.3390/pharmaceutics15061720
[31] Xu HY, Cai L, Hufnagel S, et al. Intranasal vaccine: Factors to consider in research and development[J]. Int J Pharm, 2021, 609: 121180. doi:10.1016/j.ijpharm.2021.121180
[32] Riese P, Sakthivel P, Trittel S, et al. Intranasal formulations: promising strategy to deliver vaccines[J]. Expert Opin Drug Deliv, 2014, 11(10): 1619-1634. doi:10.1517/17425247.2014.931936
[33] Jabbal-Gill I. Nasal vaccine innovation[J]. J Drug Target, 2010, 18(10): 771-786. doi:10.3109/1061186x.2010.523790
[34] 张佳璐, 张旋旋, 毛群颖, 等. 新型冠状病毒黏膜疫苗研究进展[J]. 中国病毒病杂志, 2023, 13(6): 419-427. doi:10.16505/j.2095-0136.2023.6003 ZHANG Jialu, ZHANG Xuanxuan, MAO Qunying, et al. Research progress on mucosal vaccines for SARS-CoV-2[J]. Chinese Journal of Viral Diseases, 2023, 13(6): 419-427. doi:10.16505/j.2095-0136.2023.6003
[35] Yuan MJ, Han ZY, Liang Y, et al. mRNA nanodelivery systems: targeting strategies and administration routes[J]. Biomater Res, 2023, 27(1): 90. doi:10.1186/s40824-023-00425-3
[36] Leal J, Smyth HDC, Ghosh D. Physicochemical properties of mucus and their impact on transmucosal drug delivery[J]. Int J Pharm, 2017, 532(1): 555-572. doi:10.1016/j.ijpharm.2017.09.018
[37] Zhang H, Liu ZZ, Lihe HY, et al. Intranasal G5-BGG/pDNA vaccine elicits protective systemic and mucosal immunity against SARS-CoV-2 by transfecting mucosal dendritic cells[J]. Adv Healthc Mater, 2024, 13(6): e2303261. doi:10.1002/adhm.202303261
[38] Park KS, Sun XQ, Aikins ME, et al. Non-viral COVID-19 vaccine delivery systems[J]. Adv Drug Deliv Rev, 2021, 169: 137-151. doi:10.1016/j.addr.2020.12.008
[39] Arnheim-Dahlstr m L, H llgren J, Weibull CE, et al. Risk of presentation to hospital with epileptic seizures after vaccination with monovalent AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine(Pandemrix): self controlled case series study[J]. BMJ, 2012, 345: e7594. doi:10.1136/bmj.e7594
[40] Jin Z, Gao S, Cui XL, et al. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines[J]. Int J Pharm, 2019, 572: 118731. doi:10.1016/j.ijpharm.2019.118731
[41] Lee SJ, Nguyen MT. Recent advances of vaccine adjuvants for infectious diseases[J]. Immune Netw, 2015, 15(2): 51-57. doi:10.4110/in.2015.15.2.51
[42] Overton ET, Goepfert PA, Cunningham P, et al. Intranasal seasonal influenza vaccine and a TLR-3 agonist, rintatolimod, induced cross-reactive IgA antibody formation against avian H5N1 and H7N9 influenza HA in humans[J]. Vaccine, 2014, 32(42): 5490-5495. doi:10.1016/j.vaccine.2014.07.078
[43] Jin Z, Gao S, Cui XL, et al. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines[J]. Int J Pharm, 2019, 572: 118731. doi:10.1016/j.ijpharm.2019.118731
[44] Wu XF, Li W, Rong H, et al. A nanoparticle vaccine displaying conserved epitopes of the preexisting neutralizing antibody confers broad protection against SARS-CoV-2 variants[J]. ACS Nano, 2024, 18(27): 17749-17763. doi:10.1021/acsnano.4c03075
[45] Dong CH, Zhu WD, Wei L, et al. Enhancing cross-protection against influenza by heterologous sequential immunization with mRNA LNP and protein nanoparticle vaccines[J]. Nat Commun, 2024, 15(1): 5800. doi:10.1038/s41467-024-50087-5
[46] Robert-Guroff M. Replicating and non-replicating viral vectors for vaccine development[J]. Curr Opin Biotechnol, 2007, 18(6): 546-556. doi:10.1016/j.copbio.2007.10.010
[47] Matsuda K, Migueles SA, Huang JH, et al. A replication-competent adenovirus-vectored influenza vaccine induces durable systemic and mucosal immunity[J]. J Clin Invest, 2021, 131(5): e140794. doi:10.1172/JCI140794
[48] Metz C, Haug V, Müller M, et al. Pharmacokinetic and environmental risk assessment of prime-2-CoV, a non-replicating orf virus-based vaccine against SARS-CoV-2[J]. Vaccines(Basel), 2024, 12(5): 492. doi:10.3390/vaccines12050492
[49] Lucy CF, John DC. Mucosal Immunology[M/OL]. Elsevier, 2015: 1183-1199[2023-12-22]. doi:10.1016/B978-0-12-415847-4.00061-6.
[50] Crothers JW, Norton EB. Recent advances in enterotoxin vaccine adjuvants[J]. Curr Opin Immunol, 2023, 85: 102398. doi:10.1016/j.coi.2023.102398
[51] Correa VA, Portilho AI, De Gaspari E. Vaccines, adjuvants and key factors for mucosal immune response[J]. Immunology, 2022, 167(2): 124-138. doi:10.1111/imm.13526
[52] Yin Q, Luo W, Mallajosyula V, et al. A TLR7-nanoparticle adjuvant promotes a broad immune response against heterologous strains of influenza and SARS-CoV-2[J]. Nat Mater, 2023, 22(3): 380-390. doi:10.1038/s41563-022-01464-2
[53] Leekha A, Saeedi A, Kumar M, et al. An intranasal nanoparticle STING agonist protects against respiratory viruses in animal models[J]. Nat Commun, 2024, 15(1): 6053. doi:10.1038/s41467-024-50234-y
[54] Kenter AL, Richner JM. Tonsil organoids: peering down the throat of human immunity[J]. Trends Immunol, 2021, 42(5): 367-368. doi:10.1016/j.it.2021.03.009
[55] Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, et al. Long-term expanding human airway organoids for disease modeling[J]. EMBO J, 2019, 38(4): e100300. doi:10.15252/embj.2018100300
[56] Kenter AL, Richner JM. Tonsil organoids: peering down the throat of human immunity[J]. Trends Immunol, 2021, 42(5): 367-368. doi:10.1016/j.it.2021.03.009
[57] Kastenschmidt JM, Sureshchandra S, Jain A, et al. Influenza vaccine format mediates distinct cellular and antibody responses in human immune organoids[J]. Immunity, 2023, 56(8): 1910-1926.e7. doi:10.1016/j.immuni.2023.06.019
[58] Wagar L. Small centers of defense[J]. Science, 2022, 375(6583): 830. doi:10.1126/science.abn9652
[59] Wagar LE, Salahudeen A, Constantz CM, et al. Modeling human adaptive immune responses with tonsil organoids[J]. Nat Med, 2021, 27(1): 125-135. doi:10.1038/s41591-020-01145-0
[60] Wagar LE. Human immune organoids: a tool to study vaccine responses[J]. Nat Rev Immunol, 2023, 23(11): 699. doi:10.1038/s41577-023-00956-9
[61] Takebe T, Zhang BY, Radisic M. Synergistic engineering: organoids meet organs-on-a-chip[J]. Cell Stem Cell, 2017, 21(3): 297-300. doi:10.1016/j.stem.2017.08.016
[1] DONG Pin, YING Xinjiang, CHEN Xinwei, DENG Zhihong, ZHANG Shaoqiang, YU Ziwei, JIN Bin, SUN Zhenfeng, XIE Jin, ZHU Jiangcai. Preliminary clinical analysis of neo-adjuvant chemotherapy with nimotuzumab plus nedaplatin and fluorouracil in hypopharyngeal squamous cell carcinoma. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(3): 10-14.
[2] XU Yuan-yuan, ZENG Quan, HONG Su-ling, HU Guo-hua. Comparison of neoadjuvant chemotherapy followed by concurrent chemoradiotherapy versus concurrent  chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: A meta analysis. [J]. J Otolaryngol Ophthalmol Shandong Univ, 2013, 27(5): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Changliang,HUANG Zhiwu,YAO Hangqi,ZHU Yong,SNU Yi . Study on auditory brainstem response[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 9 -13 .
[2] WANG Hong-xia,WANG Peng-cheng . Expression of NSE,S100 and GFAP in retinoblastoma and its clinical significance[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 263 -264 .
[3] HUANG Fang,HUANG Hai-qiong,HUANG Jian-qiang,HE He-fan . Bronchoscopic video supervision system in infant bronchial foreign bodies[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 276 -277 .
[4] YU Zhi-liang,WANG Wei-wei,WANG Ming-hua . Excision of huge epiglottis cysts under MedtrnicXPS3000 in 23 cases[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 278 -279 .
[5]

ZHANG Jian-li,WANG Yue-jian,CHEN Wei-xiong,HU Wei-wei,LI Guang-min

.

Immunohistochemistry and serial section in detection of lymph node micrometastasis of head and neck squamous cell carcinoma

[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(4): 299 -303 .
[6] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(4): 331 -332 .
[7] LIU Feng-an,CHEN Hong-jie,HU Hong-yi,ZHENG Shi-xin .

Effect of cochlear implantation on hearing and speech rehabilitation

[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(4): 333 -335 .
[8] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(4): 349 -349 .
[9] CHEN Feng-hua,MA Jian-min,WANG Ning-li,WANG Jin-jin . Culture of the human Tenon′s capsule fibroblast cells in vitro[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(4): 350 -352 .
[10] HE Shou-huan,CHEN Bin,YIN Shan-kai,SU Kai-ming,JIANG Xiao . Morphological changes of the upper airway in OSAHS patients with UPPP
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(5): 385 -388 .