Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (6): 31-39.doi: 10.6040/j.issn.1673-3770.0.2024.242

• Original Article • Previous Articles    

Preliminary study on neurotransmitter levels in the anterior cingulate cortex and their relationship with hearing levels in patients with age-related hearing loss

TAO Duoduo1, SHI Bin1, ZHAO Yunshu2, LI Yonggang2, LIU Jisheng1   

  1. 1. Department of Otorhinolaryngology/Suzhou Clinical Medical Center for Otorhinolaryngology Head and Neck Surgery;
    2. Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
  • Published:2025-11-19

Abstract: Objective This study aims to explore whether ARHL is related to the ACC from the perspective of neurotransmitter levels, thereby providing experimental evidence for understanding the mechanisms of ARHL. Methods The study included 8 ARHL patients, 8 age-matched, gender-matched normal hearing(NH)elderly individuals were recruited as the control group. Pure-tone audiometry was used to assess the hearing levels of all subjects at 0.25, 0.5, 1, 2, 4, and 8 kHz. Magnetic resonance spectroscopy(MRS)was employed to measure γ-aminobutyric acid(GABA)and glutamine-glutamate(Glx)levels in the ACC of both groups. Data were statistically analyzed using SPSS v27.0. Results Compared to the NH group, the ARHL group showed significantly lower GABA levels(P=0.021)and significantly higher Glx levels(P<0.001). GABA levels were significantly negatively correlated with 8 kHz pure-tone thresholds(P=0.014), and Glx levels were significantly positively correlated with pure-tone thresholds at 0.5, 1, 2, 4, and 8 kHz(all P<0.05). Conclusion Neurotransmitter dysregulation in the ACC of ARHL patients is associated with the degree and frequency of hearing loss, which may provide a theoretical basis for future research on the mechanisms underlying ARHL.

Key words: Age-related hearing loss, Anterior cingulate cortex, γ-aminobutyric acid, Glutamate-glutamine, Hearing level

CLC Number: 

  • R764.43+6
[1] Bowl MR, Dawson SJ. Age-related hearing loss[J]. Cold Spring Harb Perspect Med, 2019, 9(8): 033217. doi:10.1101/cshperspect.a033217
[2] Tawfik KO, Klepper K, Saliba J, et al. Advances in understanding of presbycusis[J]. J Neurosci Res, 2020, 98(9): 1685-1697. doi:10.1002/jnr.24426
[3] 周颖东, 张梦娴, 王青玲, 等. 氧化应激在老年性聋发病机制中的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(1):72-78. doi:10.6040/j.issn.1673-3770.0.2022.518 ZHOU Yingdong, ZHANG Mengxian, WANG Qingling, et al. Progress of research of oxidative stress in the pathogenesis of presbycusis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(1):72-78. doi:10.6040/j.issn.1673-3770.0.2022.518
[4] Caspary DM, Schatteman TA, Hughes LF. Age-related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: role of inhibitory inputs[J]. J Neurosci, 2005, 25(47): 10952-10959. doi:10.1523/JNEUROSCI.2451-05.2005
[5] Peelle JE, Wingfield A. The neural consequences of age-related hearing loss[J]. Trends Neurosci, 2016, 39(7): 486-497. doi:10.1016/j.tins.2016.05.001
[6] Gao F, Wang GB, Ma W, et al. Decreased auditory GABA+ concentrations in presbycusis demonstrated by edited magnetic resonance spectroscopy[J]. Neuroimage, 2015, 106: 311-316. doi:10.1016/j.neuroimage.2014.11.023
[7] Rolls ET. The cingulate cortex and limbic systems for emotion, action, and memory[J]. Brain Struct Funct, 2019, 224(9): 3001-3018. doi:10.1007/s00429-019-01945-2
[8] Crottaz-Herbette S, Menon V. Where and when the anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence[J]. J Cogn Neurosci, 2006, 18(5): 766-780. doi:10.1162/jocn.2006.18.5.766
[9] Eckert MA, Teubner-Rhodes S, Vaden KI Jr. Is listening in noise worth it? the neurobiology of speech recognition in challenging listening conditions[J]. Ear Hear, 2016, 37(Suppl 1): 101S-110S. doi:10.1097/AUD.0000000000000300
[10] Edden RAE, Muthukumaraswamy SD, Freeman TCA, et al. Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex[J]. J Neurosci, 2009, 29(50): 15721-15726. doi:10.1523/JNEUROSCI.4426-09.2009
[11] Fu XN, Qin MT, Liu XM, et al. Decreased GABA levels of the anterior and posterior cingulate cortex are associated with executive dysfunction in mild cognitive impairment[J]. Front Neurosci, 2023, 17: 1220122. doi:10.3389/fnins.2023.1220122
[12] Tsai Do BS, Bush ML, Weinreich HM, et al. Clinical practice guideline: age-related hearing loss[J]. Otolaryngol Head Neck Surg, 2024, 170(2): 1-54. doi:10.1002/ohn.750
[13] Yang Y, Rui QY, Han ST, et al. Reduced GABA levels in the medial prefrontal cortex are associated with cognitive impairment in patients with NMOSD[J]. Mult Scler Relat Disord, 2022, 58: 103496. doi:10.1016/j.msard.2022.103496
[14] van Veenendaal TM, Backes WH, van Bussel FCG, et al. Glutamate quantification by PRESS or MEGA-PRESS: validation, repeatability, and concordance[J]. Magn Reson Imaging, 2018, 48: 107-114. doi:10.1016/j.mri.2017.12.029
[15] Brix MK, Dwyer GE, Craven AR, et al. MEGA-PRESS and PRESS measure oxidation of glutathione in a phantom[J]. Magn Reson Imaging, 2019, 60: 32-37. doi:10.1016/j.mri.2019.03.020
[16] Edden RAE, Barker PB. Spatial effects in the detection of gamma-aminobutyric acid: improved sensitivity at high fields using inner volume saturation[J]. Magn Reson Med, 2007, 58(6): 1276-1282. doi:10.1002/mrm.21383
[17] Kovalová M, Mrázková E, ?kerková M, et al. The Importance of Screening for Hearing Loss in the Elderly[J]. Otolaryngol Pol, 2021,76(3):32-38. doi:10.5604/01.3001.0015.6493
[18] Li HZ, Jia JP, Yang ZQ. Mini-mental state examination in elderly Chinese: a population-based normative study[J]. J Alzheimers Dis, 2016, 53(2): 487-496. doi:10.3233/JAD-160119
[19] Puts NAJ, Edden RAE. In vivo magnetic resonance spectroscopy of GABA: a methodological review[J]. Prog Nucl Magn Reson Spectrosc, 2012, 60: 29-41. doi:10.1016/j.pnmrs.2011.06.001
[20] Edden RAE, Puts NAJ, Harris AD, et al. Gannet: a batch-processing tool for the quantitative analysis of gamma-aminobutyric acid-edited MR spectroscopy spectra[J]. J Magn Reson Imaging, 2014, 40(6): 1445-1452. doi:10.1002/jmri.24478
[21] Srinivasan R, Sailasuta N, Hurd R, et al. Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T[J]. Brain, 2005, 128(Pt 5): 1016-1025. doi:10.1093/brain/awh467
[22] Shungu DC, Mao XL, Gonzales R, et al. Brain γ-aminobutyric acid(GABA)detection in vivo with the J-editing(1)H MRS technique: a comprehensive methodological evaluation of sensitivity enhancement, macromolecule contamination and test-retest reliability[J]. NMR Biomed, 2016, 29(7): 932-942. doi:10.1002/nbm.3539
[23] Arm J, Oeltzschner G, Al-Iedani O, et al. Altered in vivo brain GABA and glutamate levels are associated with multiple sclerosis central fatigue[J]. Eur J Radiol, 2021, 137: 109610. doi:10.1016/j.ejrad.2021.109610
[24] Wu XJ, Yuan JP, Yang Y, et al. Elevated GABA level in the precuneus and its association with pain intensity in patients with postherpetic neuralgia: an initial proton magnetic resonance spectroscopy study[J]. Eur J Radiol, 2022, 157: 110568. doi:10.1016/j.ejrad.2022.110568
[25] Caspary DM, Ling L, Turner JG, et al. Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system[J]. J Exp Biol, 2008, 211(11): 1781-1791. doi:10.1242/jeb.013581
[26] Benedict RHB, Shucard DW, Santa Maria MP, et al. Covert auditory attention generates activation in the rostral/dorsal anterior cingulate cortex[J]. J Cogn Neurosci, 2002, 14(4): 637-645. doi:10.1162/0898929-0260045765
[27] Luan Y, Wang CX, Jiao Y, et al. Abnormal functional connectivity and degree centrality in anterior cingulate cortex in patients with long-term sensorineural hearing loss[J]. Brain Imag Behav, 2020, 14(3): 682-695. doi:10.1007/s11682-018-0004-0
[28] Mulert C, Seifert C, Leicht G, et al. Single-trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making[J]. Neuroimage, 2008, 42(1): 158-168. doi:10.1016/j.neuroimage.2008.04.236
[29] Gunduz-Bruce H, Reinhart RMG, Roach BJ, et al. Glutamatergic modulation of auditory information processing in the human brain[J]. Biol Psychiatry, 2012, 71(11): 969-977. doi:10.1016/j.biopsych.2011.09.031
[30] Knipper M, Singer W, Schwabe K, et al. Disturbed balance of inhibitory signaling links hearing loss and cognition[J]. Front Neural Circuits, 2021, 15: 785603. doi:10.3389/fncir.2021.785603
[31] Kotak VC, Fujisawa S, Lee FA, et al. Hearing loss raises excitability in the auditory cortex[J]. J Neurosci, 2005, 25(15): 3908-3918. doi:10.1523/JNEUROSCI.5169-04.2005
[32] Alvarado JC, Fuentes-Santamaría V, Gabaldón-Ull MC, et al. Wistar rats: a forgotten model of age-related hearing loss[J]. Front Aging Neurosci, 2014, 6: 29. doi:10.3389/fnagi.2014.00029
[33] Fitzhugh MC, Hemesath A, Schaefer SY, et al. Functional connectivity of heschl’s gyrus associated with age-related hearing loss: a resting-state fMRI study[J]. Front Psychol, 2019, 10: 2485. doi:10.3389/fpsyg.2019.02485
[34] Tadros SF, D'Souza M, Zettel ML, et al. Glutamate-related gene expression changes with age in the mouse auditory midbrain[J]. Brain Res, 2007, 1127(1): 1-9. doi:10.1016/j.brainres.2006.09.081
[35] Profant O, Škoch A, Balogová Z, et al. Diffusion tensor imaging and MR morphometry of the central auditory pathway and auditory cortex in aging[J]. Neuroscience, 2014, 260: 87-97. doi:10.1016/j.neuroscience.2013.12.010
[36] Ruan QW, Yu ZW, Zhang WB, et al. Cholinergic hypofunction in presbycusis-related tinnitus with cognitive function impairment: emerging hypotheses[J]. Front Aging Neurosci, 2018, 10: 98. doi:10.3389/fnagi.2018.00098
[1] DONG Lingkang, YU Dongzhen. Trends and projections of the burden of age-related hearing loss in China from 1990 to 2021 [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(3): 61-69.
[2] ZHANG Lixia, LI Lin. Research on screening the key genes of age-related hearing loss by GEO database [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(3): 104-114.
[3] . Evaluation of hearing levels, speech functions and cognitive abilities of cochlear implantation in deaf children with abnormal white matter. [J]. J Otolaryngol Ophthalmol Shandong Univ, 2017, 31(2): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!