Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2021, Vol. 35 ›› Issue (1): 114-118.doi: 10.6040/j.issn.1673-3770.0.2020.146

Previous Articles     Next Articles

Research progress of IL-36 in chronic rhinosinusitis with nasal polyps

MU Tingting1,2, YANG Yujuan1Overview   

  1. ZHANG Yu1, SONG Xicheng1, 2Guidance1. Department of Otorhinolaryngology & Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital, Yantai 264000, Shandong, China;
    2. Binzhou Medical College, Yantai 264003, Shandong, China
  • Published:2021-02-01

Abstract: Interleukin-36(IL-36), a member of the IL-1 superfamily(IL-1F), is biologically active in epithelial cells and in specific immune cells. Its main functions include promoting cell activation, secreting cytokines and chemokines, and recruiting and activating different immune cells. Recent studies have found that the IL-36 family has a role in the pathogenesis of chronic rhinosinusitis with nasal polyps(CRSwNP). This article reviews the research progress and biological characteristics of IL-36 in promoting the inflammatory response, tissue remodeling, and disrupting the epithelial barrier in chronic rhinosinusitis with nasal polyps.

Key words: IL-36, CRSwNP, Immune response, Tissue Inhibitor of Metalloproteinases, Epithelial barrier

CLC Number: 

  • 765.4
[1] Dietrich D, Martin P, Flacher V, et al. Interleukin-36 potently stimulates human M2 macrophages, Langerhans cells and keratinocytes to produce pro-inflammatory cytokines[J]. Cytokine, 2016, 84: 88-98. doi:10.1016/j.cyto.2016.05.012.
[2] Yuan ZC, Xu WD, Liu XY, et al. Biology of IL-36 signaling and its role in systemic inflammatory diseases[J]. Front Immunol, 2019, 10: 2532. doi:10.3389/fimmu.2019.02532.
[3] Hashiguchi Y, Yabe R, Chung SH, et al. IL-36α from skin-resident cells plays an important role in the pathogenesis of imiquimod-induced psoriasiform dermatitis by forming a local autoamplification loop[J]. J Immunol, 2018, 201(1): 167-182. doi:10.4049/jimmunol.1701157.
[4] Bassoy EY, Towne JE, Gabay C. Regulation and function of interleukin-36 cytokines[J]. Immunol Rev, 2018, 281(1): 169-178. doi:10.1111/imr.12610.
[5] Zhou L, Todorovic V. Interleukin-36: structure, signaling and function[M] //Advances in Experimental Medicine and Biology. New York, NY: Springer US, 2020. doi:10.1007/5584_2020_488
[6] van de Veerdonk FL, Netea MG. New insights in the immunobiology of IL-1 family members[J]. Front Immunol, 2013, 4: 167. doi:10.3389/fimmu.2013.00167.
[7] Walsh PT, Fallon PG. The emergence of the IL-36 cytokine family as novel targets for inflammatory diseases[J]. Ann N Y Acad Sci, 2018, 1417(1): 23-34. doi:10.1111/nyas.13280.
[8] van de Veerdonk FL, de Graaf DM, Joosten LA, et al. Biology of IL-38 and its role in disease[J]. Immunol Rev, 2018, 281(1): 191-196. doi:10.1111/imr.12612.
[9] Gabay C, Towne JE. Regulation and function of interleukin-36 cytokines in homeostasis and pathological conditions[J]. J Leukoc Biol, 2015, 97(4): 645-652. doi:10.1189/jlb.3RI1014-495R.
[10] Walsh PT, Fallon PG. The emergence of the IL-36 cytokine family as novel targets for inflammatory diseases[J]. Ann N Y Acad Sci, 2018, 1417(1): 23-34. doi:10.1111/nyas.13280.
[11] Foster AM, Baliwag J, Chen CS, et al. IL-36 promotes myeloid cell infiltration, activation, and inflammatory activity in skin[J]. J Immunol, 2014, 192(12): 6053-6061. doi:10.4049/jimmunol.1301481.
[12] Henry CM, Sullivan GP, Clancy DM, et al. Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines[J]. Cell Rep, 2016, 14(4): 708-722. doi:10.1016/j.celrep.2015.12.072.
[13] Murrieta-Coxca JM, Rodríguez-Martínez S, Cancino-Diaz ME, et al. IL-36 cytokines: regulators of inflammatory responses and their emerging role in immunology of reproduction[J]. Int J Mol Sci, 2019, 20(7): E1649. doi:10.3390/ijms20071649.
[14] Buhl AL, Wenzel J. Interleukin-36 in infectious and inflammatory skin diseases[J]. Front Immunol, 2019, 10: 1162. doi:10.3389/fimmu.2019.01162.
[15] Vigne S, Palmer G, Martin P, et al. IL-36 signaling amplifies Th1 responses by enhancing proliferation and Th1 polarization of naive CD4+T cells[J]. Blood, 2012, 120(17): 3478-3487. doi:10.1182/blood-2012-06-439026.
[16] Ge Y, Huang M, Yao YM. Recent advances in the biology of IL-1 family cytokines and their potential roles in development of Sepsis[J]. Cytokine Growth Factor Rev, 2019, 45: 24-34. doi:10.1016/j.cytogfr.2018.12.004.
[17] Ding LP, Wang XH, Hong XP, et al. IL-36 cytokines in autoimmunity and inflammatory disease[J]. Oncotarget, 2018, 9(2): 2895-2901. doi:10.18632/oncotarget.22814.
[18] Sato Y, Fujimura T, Kambayashi Y, et al. Recurrent multiple squamous cell carcinomas on the scalp in a patient with juvenile dermatomyositis[J]. Case Rep Oncol, 2017, 10(1): 106-111. doi:10.1159/000456001.
[19] Weinstein AM, Giraldo NA, Petitprez F, et al. Association of IL-36γ with tertiary lymphoid structures and inflammatory immune infiltrates in human colorectal cancer[J]. Cancer Immunol Immunother, 2019, 68(1): 109-120. doi:10.1007/s00262-018-2259-0.
[20] Turtoi A, Brown I, Schl?ger M, et al. Gene expression profile of human lymphocytes exposed to(211)At alpha particles[J]. Radiat Res, 2010, 174(2): 125-136. doi:10.1667/RR1659.1.
[21] Jiang ZW, Liu YQ, Li CW, et al. IL-36γ induced by the TLR3-SLUG-VDR Axis promotes wound healing via REG3A[J]. J Invest Dermatol, 2017, 137(12): 2620-2629. doi:10.1016/j.jid.2017.07.820.
[22] Medina-Contreras O, Harusato A, Nishio H, et al. Cutting edge: IL-36 receptor promotes resolution of intestinal damage[J]. J Immunol, 2016, 196(1): 34-38. doi:10.4049/jimmunol.1501312.
[23] Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020[J]. Rhinology, 2020, 58(Suppl S29): 1-464. doi:10.4193/Rhin20.600.
[24] Orlandi RR, Kingdom TT, Hwang PH, et al. International consensus statement on allergy and rhinology: rhinosinusitis[J]. Int Forum Allergy Rhinol, 2016, 6(Suppl 1): S22-S209. doi:10.1002/alr.21695.
[25] Chaaban MR, Kejner A, Rowe SM, et al. Cystic fibrosis chronic rhinosinusitis: a comprehensive review[J]. Am J Rhinol Allergy, 2013, 27(5): 387-395. doi:10.2500/ajra.2013.27.3919.
[26] Joo YH, Kim HK, Hak Choi I, et al. Increased expression of interleukin 36 in chronic rhinosinusitis and its contribution to chemokine secretion and increased epithelial permeability[J]. Cytokine, 2020, 125: 154798. doi:10.1016/j.cyto.2019.154798.
[27] Wang CS, Yan B, Zhang L. The epithelium-derived inflammatory mediators of chronic rhinosinusitis with nasal polyps[J]. Expert Rev Clin Immunol, 2020, 16(3): 293-310. doi:10.1080/1744666X.2020.1723417.
[28] 李华斌, 赖玉婷. 慢性鼻-鼻窦炎的发病机制及诊疗进展[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 4-9. LI Huabin, LAI Yuting. Pathogenesis, diagnosis, and treatment of chronic rhinosinusitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(3): 4-9.
[29] Wang H, Li ZY, Jiang WX, et al. The activation and function of IL-36γ in neutrophilic inflammation in chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2018, 141(5): 1646-1658. doi:10.1016/j.jaci.2017.12.972.
[30] Aoyagi T, Newstead MW, Zeng X, et al. IL-36 receptor deletion attenuates lung injury and decreases mortality in murine influenza pneumonia[J]. Mucosal Immunol, 2017, 10(4): 1043-1055. doi:10.1038/mi.2016.107.
[31] Agache I, Akdis CA. Endotypes of allergic diseases and asthma: an important step in building blocks for the future of precision medicine[J]. Allergol Int, 2016, 65(3): 243-252. doi:10.1016/j.alit.2016.04.011.
[32] 张宇, 宋西成. 慢性鼻窦炎伴鼻息肉与哮喘的相关性机制及治疗策略研究进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(1): 49-52. ZHANG Yu, SONG Xicheng. Advances in interaction mechanisms and treatment strategy between chronic rhinosinusitis with nasal polyp and asthma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(1): 49-52.
[33] Bridgewood C, Stacey M, Alase A, et al. IL-36γ has proinflammatory effects on human endothelial cells[J]. Exp Dermatol, 2017, 26(5): 402-408. doi:10.1111/exd.13228.
[34] Muller WA. Transendothelial migration: unifying principles from the endothelial perspective[J]. Immunol Rev, 2016, 273(1): 61-75. doi:10.1111/imr.12443.
[35] Heath JE, Scholz GM, Veith PD, et al. IL-36γ regulates mediators of tissue homeostasis in epithelial cells[J]. Cytokine, 2019, 119: 24-31. doi:10.1016/j.cyto.2019.02.012.
[36] 纪文君, 赵春源. 组织重塑与慢性鼻-鼻窦炎发病机制的相关性[J]. 中国耳鼻咽喉颅底外科杂志, 2014, 20(1): 85-88, 92. doi:10.11798/j.issn.1007-1520.201401027
[37] Wynne M, Atkinson C, Schlosser RJ, et al. Contribution of epithelial cell dysfunction to the pathogenesis of chronic rhinosinusitis with nasal polyps[J]. Am J Rhinol Allergy, 2019, 33(6): 782-790. doi:10.1177/1945892419868588.
[38] Jiao J, Wang CS, Zhang L. Epithelial physical barrier defects in chronic rhinosinusitis[J]. Expert Rev Clin Immunol, 2019, 15(6): 679-688. doi:10.1080/1744666X.2019.1601556.
[39] Soyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-γ and IL-4[J]. J Allergy Clin Immunol, 2012, 130(5): 1087-1096.e10. doi:10.1016/j.jaci.2012.05.052.
[1] HUANG Danyi, ZHANG Ting,CHEN Jing, ZHANG Wei. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83.
[2] LI Chunhua, LIU Xiao,LIU Hongbing. Galectin-10 and chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(3): 106-111.
[3] WANG Guifeng, FANG Wenhao, PAN Jinbin, WEI Maobin, WANG Xiaojie, LI Yunxia. Evidences from clinical epidemiological survey for allergic rhinitis patients complicated by bronchial asthma after tonsillectomy. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(4): 42-44.
[4] LIU Na, YAN Juan, LIU Tao. Progress on the pathogenesis of chronic rhinosinusitis [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2014, 28(3): 86-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 84 -87 .
[2] NIU Shanli,CHAI Maowen,LI Zhenxiu . Endoscopic rhinoplasty of inferior turbinate in 60 patients with chronic hypertrophic rhinitis[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 16 -18 .
[3] MENG Qing-guo,LU Yong-tian,FAN Xian-liang .

Association of killer cell immunoglobulin-like receptor gene polymorphisms with nasopharyngeal carcinoma

[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 196 -199 .
[4] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 199 -199 .
[5] WAN Li-jia,LU Hai-tao,JIANG Yi-dao,LIU Hui,LI Qin,SHE La-zhi . Effect of H-uvulopalatopharyngoplasty on obstructive sleep apnea
hypopnea syndrome
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 204 -205 .
[6] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 222 -224 .
[7] JI Xiao-bin,DENG Jia-de,ZANG Lin-quan,WANG Lei,XIE Jun . Blood histamine in guinea pigs with allergic rhinitis[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 228 -230 .
[8] XIANG Deng,LU Yong-tian,SUN Huan-ji . Endoscopic repair for cerebrospinal fluid rhinorrhea in 19 cases and a literature review [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 234 -236 .
[9] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 253 -257 .
[10]
YIN Guo-hua,ZHONG Xiao . Long-term effect of laser reduction on lingua adenoids
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 280 -282 .