Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2021, Vol. 35 ›› Issue (3): 106-111.doi: 10.6040/j.issn.1673-3770.0.2020.163

Previous Articles     Next Articles

Galectin-10 and chronic rhinosinusitis with nasal polyps

LI Chunhua, LIU XiaoOverview,LIU HongbingGuidance   

  1. Department of Otolaryngology & Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
  • Published:2021-05-14

Abstract: Galectin-10(CLC, Charcot-Leyden crystal)was discovered a long ago, but until recently, few studies have explored its role in pathophysiology. In recent years, galectin-10 has received considerable attention, especially for its role in airway eosinophil diseases. Here, we provide a brief historical review of galectin-10 and related research focused on chronic rhinosinusitis. Galectin-10 is a biomarker for chronic rhinosinusitis with nasal polyps characterized by a type 2 inflammatory response and may play an important role in its pathogenesis. Thus, it is a promising potential drug target for this type of CRSwNP.

Key words: Galectin-10, CLC, Eosinophils, CRSwNP, EETosis

CLC Number: 

  • R765.4
[1] Fokkens W J, Lund V J, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020[J]. Rhinology, 2020, 58(Suppl S29):1-464. doi:10.4193/Rhin20.600.
[2] Su JY. A brief history of Charcot-Leyden crystal protein/galectin-10 research[J]. Molecules, 2018, 23(11): E2931. doi:10.3390/molecules23112931.
[3] Johannes L, Jacob R, Leffler H. Galectins at a glance[J]. J Cell Sci, 2018, 131(9): jcs208884. doi:10.1242/jcs.208884.
[4] Rao SP, Ge XN, Sriramarao P. Regulation of eosinophil recruitment and activation by galectins in allergic asthma[J]. Front Med(Lausanne), 2017, 4: 68. doi:10.3389/fmed.2017.00068.
[5] Grozdanovic MM, Doyle CB, Liu L, et al. Charcot-Leyden crystal protein/galectin-10 interacts with cationic ribonucleases and is required for eosinophil granulogenesis[J]. J Allergy Clin Immunol, 2020,146(2):377-389. doi:10.1016/j.jaci.2020.01.013.
[6] Yang RY, Rabinovich GA, Liu FT. Galectins: structure, function and therapeutic potential[J]. Expert Rev Mol Med, 2008, 10: e17. doi:10.1017/s1462399408000719.
[7] Boscher C, Dennis JW, Nabi IR. Glycosylation, galectins and cellular signaling[J]. Curr Opin Cell Biol, 2011, 23(4): 383-392. doi:10.1016/j.ceb.2011.05.001.
[8] Swaminathan GJ, Leonidas DD, Savage MP, et al. Selective recognition of mannose by the human eosinophil Charcot-Leyden crystal protein(galectin-10): a crystallographic study at 1.8 A resolution[J]. Biochemistry, 1999, 38(46): 15406. doi:10.1021/bi995093f.
[9] Su JY, Gao J, Si YL, et al. Galectin-10: a new structural type of prototype galectin dimer and effects on saccharide ligand binding[J]. Glycobiology, 2018, 28(3): 159-168. doi:10.1093/glycob/cwx107.
[10] Charcot JM, Robin C. Observation de leucocythemie[J]. Mem. Soc. Biol, 1853(5):44-50.
[11] Leyden E. Zur kenntniss Des bronchial-asthma[J]. Archiv F Pathol Anat, 1872, 54(4): 324-344. doi:10.1007/bf01997025.
[12] Thompson JH, Paddock FK. The significance of Charcot-Leyden crystals[J]. N Engl J Med, 1940, 223(23): 936-939. doi:10.1056/nejm194012052232304.
[13] Neumann A. über Die natur der Charcot-Leyden-böttcher-Neumann-krystalle.(bemerkungen zur gleichnamigen arbeit von wrede-boldt-buch.)[J]. Hoppe-Seyler's Zeitschrift Für Physiol Chemie, 1928, 173(1/2): 69-71. doi:10.1515/bchm2.1928.173.1-2.69.
[14] Ayres WW, Starkey NM. Studies on Charcot-Leyden crystals[J]. Blood, 1950, 5(3): 254-266. doi:10.1182/blood.v5.3.254.254.
[15] Guo L, Johnson RS, Schuh JC. Biochemical characterization of endogenously formed eosinophilic crystals in the lungs of mice[J]. J Biol Chem, 2000, 275(11): 8032-8037. doi:10.1074/jbc.275.11.8032.
[16] Weller PF, Goetzl EJ, Austen KF. Identification of human eosinophil lysophospholipase as the constituent of Charcot-Leyden crystals[J]. Proc Natl Acad Sci USA, 1980, 77(12): 7440-7443. doi:10.1073/pnas.77.12.7440.
[17] Huffnagle GB, Boyd MB, Street NE, et al. IL-5 is required for eosinophil recruitment, crystal deposition, and mononuclear cell recruitment during a pulmonary Cryptococcus neoformans infection in genetically susceptible mice(C57BL/6)[J]. J Immunol, 1998, 160(5): 2393-2400.
[18] Hoenerhoff MJ, Starost MF, Ward JM. Eosinophilic crystalline pneumonia as a major cause of death in 129S4/SvJae mice[J]. Vet Pathol, 2006, 43(5): 682-688. doi:10.1354/vp.43-5-682.
[19] Wilkerson EM, Johansson MW, Hebert AS, et al. The peripheral blood eosinophil proteome[J]. J Proteome Res, 2016, 15(5): 1524-1533. doi:10.1021/acs.jproteome.6b00006.
[20] Ackerman SJ, Corrette SE, Rosenberg HF, et al. Molecular cloning and characterization of human eosinophil Charcot-Leyden crystal protein(lysophospholipase). Similarities to IgE binding proteins and the S-type animal lectin superfamily[J]. J Immunol, 1993, 150(2): 456-468.
[21] Ackerman SJ, Weil GJ, Gleich GJ. Formation of Charcot-Leyden crystals by human basophils[J]. J Exp Med, 1982, 155(6): 1597-1609. doi:10.1084/jem.155.6.1597.
[22] Dvorak AM, Letourneau L, Weller PF, et al. Ultrastructural localization of Charcot-Leyden crystal protein(lysophospholipase)to intracytoplasmic crystals in tumor cells of primary solid and papillary epithelial neoplasm of the pancreas[J]. Lab Invest, 1990, 62(5): 608-615.
[23] Kubach J, Lutter P, Bopp T, et al. Human CD4+CD25+ regulatory T cells: proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function[J]. Blood, 2007, 110(5): 1550-1558. doi:10.1182/blood-2007-01-069229.
[24] Noh S, Jin S, Park CO, et al. Elevated galectin-10 expression of IL-22-producing T cells in patients with atopic dermatitis[J]. J Invest Dermatol, 2016, 136(1): 328-331. doi:10.1038/JID.2015.369.
[25] Ali ND, Weissmann D. Charcot-Leyden crystals in T-cell lymphoblastic lymphoma[J]. Blood, 2017, 129(3): 394. doi:10.1182/blood-2016-10-743179.
[26] Lingblom C, Andersson J, Andersson K, et al. Regulatory eosinophils suppress T cells partly through galectin-10[J]. J Immunol, 2017, 198(12): 4672-4681. doi:10.4049/jimmunol.1601005.
[27] Zhou Z, Tenen DG, Dvorak AM, et al. The gene for human eosinophil Charcot-Leyden crystal protein directs expression of lysophospholipase activity and spontaneous crystallization in transiently transfected COS cells[J]. J Leukoc Biol, 1992, 52(6): 588-595. doi:10.1002/jlb.52.6.588.
[28] Dvorak AM, Letourneau L, Login GR, et al. Ultrastructural localization of the Charcot-Leyden crystal protein(lysophospholipase)to a distinct crystalloid-free granule population in mature human eosinophils[J]. Blood, 1988, 72(1): 150-158.
[29] Calafat J, Janssen H, Knol EF, et al. Ultrastructural localization of Charcot-Leyden crystal protein in human eosinophils and basophils[J]. Eur J Haematol, 1997, 58(1): 56-66. doi:10.1111/j.1600-0609.1997.tb01411.x.
[30] Su JY, Gao J, Si YL, et al. Galectin-10: a new structural type of prototype galectin dimer and effects on saccharide ligand binding[J]. Glycobiology, 2018, 28(3): 159-168. doi:10.1093/glycob/cwx107.
[31] Ueki S, Miyabe Y, Yamamoto Y, et al. Charcot-Leyden crystals in eosinophilic inflammation: active cytolysis leads to crystal formation[J]. Curr Allergy Asthma Rep, 2019, 19(8): 35. doi:10.1007/s11882-019-0868-0.
[32] Grozdanovic MM, Doyle CB, Liu L, et al. Charcot-Leyden crystal protein/galectin-10 interacts with cationic ribonucleases and is required for eosinophil granulogenesis[J]. J Allergy Clin Immunol, 2020: S0091-S6749(20)30100-7. doi:10.1016/j.jaci.2020.01.013.
[33] Ueki S, Tokunaga T, Melo RCN, et al. Charcot-Leyden crystal formation is closely associated with eosinophil extracellular trap cell death[J]. Blood, 2018, 132(20): 2183-2187. doi:10.1182/blood-2018-04-842260.
[34] Su JY, Song CY, Si YL, et al. Identification of key amino acid residues determining ligand binding specificity, homodimerization and cellular distribution of human galectin-10[J]. Glycobiology, 2019, 29(1): 85-93. doi:10.1093/glycob/cwy087.
[35] Dyer KD, Rosenberg HF. Eosinophil Charcot-Leyden crystal protein binds to beta-galactoside sugars[J]. Life Sci, 1996, 58(23): 2073-2082. doi:10.1016/0024-3205(96)00201-9.
[36] Negrete-Garcia MC, Jiménez-Torres CY, Alvarado-Vásquez N, et al. Galectin-10 is released in the nasal lavage fluid of patients with aspirin-sensitive respiratory disease[J]. Sci World J, 2012: 474020. doi:10.1100/2012/474020.
[37] Chua JC, Douglass JA, Gillman A, et al. Galectin-10, a potential biomarker of eosinophilic airway inflammation[J]. PLoS One, 2012, 7(8): e42549. doi:10.1371/journal.pone.0042549.
[38] Nyenhuis SM, Alumkal P, Du J, et al. Charcot-Leyden crystal protein/galectin-10 is a surrogate biomarker of eosinophilic airway inflammation in asthma[J]. Biomark Med, 2019, 13(9): 715-724. doi:10.2217/bmm-2018-0280.
[39] Persson EK, Verstraete K, Heyndrickx I, et al. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment[J]. Science, 2019, 364(6442): eaaw4295. doi:10.1126/science.aaw4295.
[40] Liu C, Yan B, Qi SH, et al. Predictive significance of Charcot-Leyden crystals for eosinophilic chronic rhinosinusitis with nasal polyps[J]. Am J Rhinol Allergy, 2019, 33(6): 671-680. doi:10.1177/1945892419860646.
[41] Wu D, Yan B, Wang Y, et al. Charcot-Leyden crystal concentration in nasal secretions predicts clinical response to glucocorticoids in patients with chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2019, 144(1): 345-348.e8. doi:10.1016/j.jaci.2019.03.029.
[42] Qi S, Yan B, Liu C, et al. Predictive significance of Charcot-Leyden Crystal mRNA levels in nasal brushing for nasal polyp recurrence[J]. Rhinology, 2020, 58(2): 166-174. doi:10.4193/Rhin19.296.
[43] Ueki S, Konno Y, Takeda M, et al. Eosinophil extracellular trap cell death-derived DNA traps: Their presence in secretions and functional attributes[J]. J Allergy Clin Immunol, 2016, 137(1): 258-267. doi:10.1016/j.jaci.2015.04.041.
[44] Ueki S, Tokunaga T, Fujieda S, et al. Eosinophil ETosis and DNA traps: a new look at eosinophilic inflammation[J]. Curr Allergy Asthma Rep, 2016, 16(8): 54. doi:10.1007/s11882-016-0634-5.
[45] Gevaert E, Zhang N, Krysko O, et al. Extracellular eosinophilic traps in association with Staphylococcus aureus at the site of epithelial barrier defects in patients with severe airway inflammation[J]. J Allergy Clin Immunol, 2017, 139(6): 1849-1860.e6. doi:10.1016/j.jaci.2017.01.019.
[46] Ueki S, Miyabe Y, Yamamoto Y, et al. Charcot-Leyden crystals in eosinophilic inflammation: active cytolysis leads to crystal formation[J]. Curr Allergy Asthma Rep, 2019, 19(8): 35. doi:10.1007/s11882-019-0868-0.
[47] Franklin BS, Mangan MS, Latz E. Crystal Formation in Inflammation[J]. Annu Rev Immunol,2016,34:173-202. doi: 10.1146/annurev-immunol-041015-055539.
[48] Mulay SR, Desai J, Kumar SV, et al. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis[J]. Nat Commun, 2016, 7: 10274. doi:10.1038/ncomms10274.
[49] Klion AD. Charcot-Leyden crystals: solving an Enigma[J]. Blood, 2018, 132(20): 2111-2112. doi:10.1182/blood-2018-09-873653.
[50] Bachert C, Humbert M, Hanania NA, et al. Staphylococcus aureus and its IgE-inducing enterotoxins in asthma: current knowledge[J]. Eur Respir J, 2020, 55(4): 1901592. doi:10.1183/13993003.01592-2019.
[51] Lin H, Li ZP, Lin D, et al. Role of NLRP3 inflammasome in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps[J]. Inflammation, 2016, 39(6): 2045-2052. doi:10.1007/s10753-016-0442-z.
[52] Rodríguez-Alcázar JF, Ataide MA, Engels G, et al. Charcot-Leyden crystals activate the NLRP3 inflammasome and cause IL-1β inflammation in human macrophages[J]. J Immunol, 2019, 202(2): 550-558. doi:10.4049/jimmunol.1800107.
[53] Kim DK, Kim JY, Han YE, et al. Elastase-positive neutrophils are associated with refractoriness of chronic rhinosinusitis with nasal polyps in an Asian population[J]. Allergy Asthma Immunol Res, 2020, 12(1): 42-55. doi:10.4168/aair.2020.12.1.42.
[54] Lan F, Zhang L. Understanding the role of neutrophils in refractoriness of chronic rhinosinusitis with nasal polyps[J]. Allergy Asthma Immunol Res, 2020, 12(1): 1-3. doi:10.4168/aair.2020.12.1.1.
[55] Gevaert E, Delemarre T, De Volder J, et al. Charcot-Leyden crystals promote neutrophilic inflammation in patients with nasal polyposis[J]. J Allergy Clin Immunol, 2020, 145(1): 427-430.e4. doi:10.1016/j.jaci.2019.08.027.
[56] Udell IJ, Gleich GJ, Allansmith MR, et al. Eosinophil granule major basic protein and Charcot-Leyden crystal protein in human tears[J]. Am J Ophthalmol, 1981, 92(6): 824-828. doi:10.1016/s0002-9394(14)75637-5.
[57] Murakami A, Tutumi T, Watanabe K. Middle ear effusion and fungi[J]. Ann Otol Rhinol Laryngol, 2012, 121(9): 609-614. doi:10.1177/000348941212100908.
[58] Lao LM, Kumakiri M, Nakagawa K, et al. The ultrastructural findings of Charcot-Leyden crystals in stroma of mastocytoma[J]. J Dermatol Sci, 1998, 17(3): 198-204. doi:10.1016/s0923-1811(98)00013-9.
[59] Strauchen JA, Gordon RE. Crystalline inclusions in granulocytic sarcoma[J]. Arch Pathol Lab Med, 2002, 126(1): 85-86. doi:10.1043/0003-9985(2002)126<0085:CIIGS>2.0.CO;2.
[60] Khrizman P, Altman JK, Mohtashamian A, et al. Charcot-Leyden crystals associated with acute myeloid leukemia: case report and literature review[J]. Leuk Res, 2010, 34(12): e336-e338. doi:10.1016/j.leukres.2010.08.014.
[61] Kanitakis J. Charcot-Leyden crystals in Pemphigus vegetans[J]. J Cutan Pathol, 1987, 14(2): 127.
[62] Kumar PV, Mousavi A, Karimi M, et al. Fine needle aspiration of Langerhans cell Histiocytosis of the lymph nodes. A report of six cases[J]. Acta Cytol, 2002, 46(4): 753-756. doi:10.1159/000326991
[63] De Re V, Simula M P, Caggiari L, et al. Proteins specifically hyperexpressed in a coeliac disease patient with aberrant T cells[J]. Clin Exp Immunol,2007,148(3):402-409. doi: 10.1111/j.1365-2249.2007.03348.x.
[64] 李华斌,赖玉婷,姜文秀. 慢性鼻窦炎的内表型研究进展及精准治疗[J]. 山东大学耳鼻喉眼学报,2019,33(3):9-13. doi:10.6040/j.issn.1673-3770.1.2018.043 LI Huabin, LAI Yuting, JIANG Wenxiu. Endotypes and precision medicine in chronic sinusitis treatment[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3):9-13. doi:10.6040/j.issn.1673-3770.1.2018.043.
[1] LIANG Xu,SHI Li. Research progress in biologic targeted drug therapy for chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 30-35.
[2] YI Ruonan,CHEN Fuquan. Eosinophils and Olfactory Dysfunction [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 50-55.
[3] LIANG Xu, JIN Peng, ZHAO Li, YU Kena, ZI Xiaoxue, YUAN Guangmei, ZANG Yirang, ZHANG Qinqin, ZHANG Hailing, SHI Li, ZHANG Hongping. Role of nasal nitric oxide in diagnosis of chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 181-188.
[4] WAN Xia, KONG Yonggang, CHEN Shiming, HUA Hongli, WEI Yuanyuan, ZENG Manli. Comparison of sinus computed tomography characteristics in patients with eosinophil and non-eosinophil chronic nasosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 275-280.
[5] MU Tingting, YANG Yujuan. Research progress of IL-36 in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(1): 114-118.
[6] ZHANG Liyue, LIU Jinlan, YAO Dongfang, LI Jieen. The expression and significance of interleukin-31, and interleukin-33 and its receptor ST2, in refractory rhinosinusitis [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(3): 37-41.
[7] ZHANG Jie, GONG Qi. Clinical significance of eosinophils and neutrophils in blood and allergic reaction in patients with chronic rhinosinusitis [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(3): 54-57.
[8] ZHI Lili, SONG Daoliang. Expressions of eosinophils and IL5 in antrochoanal polyps and nasal polyps. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 43-46.
[9] JIN Chengxun, ZHAO Xue, LIU Yue, WEI Ning, JIN Chunshun. Report of 11 cases of Kimuras disease and review of literature. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(6): 63-66.
[10] QIN Jie-sheng1, WANG Hui-ge1, LIN Xin-qiang1, HONG Liang-li2. Expression and significance of IL-15mRNA in nasal polyps [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2014, 28(3): 34-37.
[11] MENG Qinghua, XIE Jinghua, SU Fang, WANG Lei. Detection of EOS in nasal section of the early stage in patients with allergic rhinitis treated with sublingual specific immunotherapy [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2010, 24(3): 36-39.
[12] LI Shu-jie,YIN Huai-sheng,LV Ling-yan,WU Yu-mei,MENG Ling-qiu,ZHANG Feng,GAO Zhen-feng,CHEN Bing . Esoinophil infiltration on the regeneration of nasal mucosa following nasal endoscopic sinus surgery [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(3): 218-220 .
[13] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 48-50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIN Bin,WANGHui-ge . Functional endoscopic sinus surgery, FESS[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(6): 481 -487 .
[2] GONG Lei,SUN Jie,XUE Zi-chao,LI Jing-hua,XUE Wei-guo . DNA analysis of the cell cycle in sino-nasal neoplasm[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 193 -195 .
[3] CHEN Wen-wen . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(5): 472 -472 .
[4] LUAN Jiangang,LIANG Chuanyu,WEN Yanjun,LI Jiong . Construction of RNAi expressing plasmid vector of pSIRENshuttle for EGFR gene silencing[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 4 -8 .
[5] MA Jing, ZHONG Cui-ping . Surgical method for nasopharyngeal fibroangioma encroaching on fossa pterygopalatina: with a report of 5 cases[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 30 -32 .
[6] LIU Qiang-he,LUO Xiang-lin,GENG Wan-ping,CHEN Chen,LEI Xun,LIU Fang-xian,DENG Ming . Age-related spiral ganglion neuron damages and hearing loss in senescence accelerated mice[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 215 -217 .
[7] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 223 -226 .
[8] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 246 -247 .
[9] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 250 -252 .
[10] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 260 -262 .