Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2024, Vol. 38 ›› Issue (1): 1-8.doi: 10.6040/j.issn.1673-3770.0.2022.539

• Original Article •     Next Articles

Hotspots of deafness gene mutation and its effect on hearing in newborns

LI Wei, ZHAO Yi, GE Yueming, FU Hongtao, WANG Jindong, ZHANG Xiaolong, DONG Jie, CHENG Yuxiang   

  1. Department of Otolaryngology, Tangshan Maternal and child Health Care Hospital, Tangshan 063000, Hebei, China
  • Published:2024-01-12

Abstract: Objective To explore the hotspots of deafness gene mutation and its effect on hearing in newborns in Tangshan city. Methods The data of 5 298 newborns born in Tangshan maternal and child health care hospital were analyzed retrospectively and hearing and deafness genes were screened. Hearing was screened by otoacoustic emission and auditory brainstem response, and the genetic basis of newborn deafness covering 15 variants in 4 genes was screened by the gene chip. Genes included GJB2(c.35delG, c.176_191del16, c.235delC, c.299_300delA.c.109G>A), GJB3(c.GJB3538 C>T), SLC26A4(IVS7-2A>G, c.2168A>G, c.1975 G>C, c.2027 T>A,c.1226G>A, IVS15+5 G>A, c.1174A>T, c.1229C>T), and 12srRNA(m.1555A>G). Results In total, 234 patients with deafness genes were identified as the deafness gene carrier group. A total of 2 404 patients were randomly selected from 5064 without deafness genes as the non-deafness gene carrier group to analyze the mutation hotspots of the deafness genes and their effects on hearing status. The prevalence of deafness genes was 4.41%(234/5 298). The positive rates of GJB2, SLC26A4, GJB3, mtDNA12SrRNA, double gene mutation, and single gene mutation were 2.49%(132/5 298), 1.34%(71/5 298), 0.28%(15/5 298), 0.19%(10/5 298), 0.09%(5/5 298), and 0.02%(1/5 298), which differed from previous reports. In primary hearing screening, the for deafness gene carrying group had a pass rate of 91.88%(215/234), a failure rate of 8.12%(19/234), and a diagnosis rate of 1.96%(3/153). In the non-carrier group, the pass rate 93.97%(2 259/2 404), the failure rate was 6.03%(145/2 404), and the diagnosis rate was 0.08%(2/2 364). The pass rate for bilateral ear, failure rate for bilateral ear, and diagnosis rate were different(P=0.001, P<0.001, P<0.001, respectively). Conclusion The common gene mutation for deafness in newborns in Tangshan City has a certain regional character, and carrying deafness genes is a high-risk factor of hearing impairment. The combined screening of hearing and hearing loss genes is beneficial for detecting hearing impairment.

Key words: Joint screening of hearing and deafness genes, GJB2, SLC26A4, mtDNA12SrRNA, GJB3

CLC Number: 

  • R764.43
[1] 李倩. 聋病遗传与环境相关高危因素的流行病学研究[D]. 北京: 中国人民解放军医学院,2014
[2] 贺娟, 肖伟利, 李雪芹, 等. 遗传性耳聋基因的研究进展[J]. 内蒙古医学杂志, 2017, 49(10): 1175-1177. doi:10.16096/j.cnki.nmgyxzz.2017.49.10.009 HE Juan, XIAO Weili, LI Xueqin, et al. The clinical application of hereditary deafness genes[J]. Inner Mongolia Medical Journal, 2017, 49(10):1175-1177. doi:10.16096/j.cnki.nmgyxzz.2017.49.10.009
[3] 《遗传性耳聋基因变异筛查技术专家共识》专家组, 国家卫生健康委员会临床检验中心产前筛查与诊断实验室室间质评专家委员会, 国家卫生健康委员会临床检验中心新生儿遗传代谢病筛查实验室室间质评专家委员会. 遗传性耳聋基因变异筛查技术专家共识[J]. 中华医学遗传学杂志, 2019, 36(3):195-198. doi: 10.3760/cma.j.issn.1003-9406.2019.03.001
[4] 相丽丽. 新生儿听力和耳聋基因联合筛查及随访[D]. 济南: 山东大学, 2014
[5] 孟西娜, 张婷, 臧嘉, 等. 无锡地区新生儿耳聋基因的MALDI-TOF-MS筛查分析[J]. 中华检验医学杂志, 2015, 38(2): 102-105. doi: 10.3760/cma.j.issn.1009-9158.2015.02.009 MENG Xina, ZHANG Ting, ZANG Jia, et al. MALDI-TOF-MS based diagnosis and analysis of newborn hereditary deafness screening in Wuxi, Jiangsu Province[J]. Chinese Journal of Laboratory Medicine, 2015, 38(2): 102-105. doi: 10.3760/cma.j.issn.1009-9158.2015.02.009
[6] 张娇, 王大勇, 韩冰, 等. 新生儿听力与基因联合筛查的系统评价和Meta分析[J]. 中华耳科学杂志, 2020, 18(2): 216-224. doi:10.3969/j.issn.1672-2922.2020.02.001 ZHANG Jiao, WANG Dayong, HAN Bing, et al. Newborn concurrent hearing and genetic screening: a systematic review and meta-analysis[J]. Chinese Journal of Otology, 2020, 18(2): 216-224. doi:10.3969/j.issn.1672-2922.2020.02.001
[7] 陈惠球, 陈敬国, 黄超. 早产儿AABR听力筛查初筛时间探讨[J]. 实用临床护理学电子杂志, 2017, 2(11): 124-125. doi: 10.3969/j.issn.2096-2479.2017.11.097 CHEN Huiqiu, CHEN Jingguo, HUANG Chao. The effect of different initial screening times on the rate of spontaneous auditory brainstem response in preterm infants[J]. Journal of Clinic Nursing's Practicality, 2017, 2(11): 124-125. doi: 10.3969/j.issn.2096-2479.2017.11.097
[8] 黄丽辉.解读 2010 年版新生儿听力筛查技术规范[J].听力学及言语疾病杂志,2011,19(6): 495-496
[9] 孙莉莉, 张莉, 张东红. 小儿非综合征型耳聋59例基因突变筛查分析[J]. 中国实用儿科杂志, 2014, 29(2): 133-136 SUN Lili, ZHANG Li, ZHANG Donghong. Screening and analysis of hot-spot deafness gene mutations among children with non-syndromic hearing loss in 59 cases[J]. Chinese Journal of Practical Pediatrics, 2014, 29(2): 133-136
[10] Kelsell DP, Dunlop J, Stevens HP, et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness[J]. Nature, 1997, 387(6628): 80-83. doi:10.1038/387080a0
[11] 龙彦, 马寅婷, 孙媛媛, 等. 微阵列芯片法检测北京地区孕期女性常见耳聋基因突变分布及随访结果分析[J]. 中华检验医学杂志, 2019, 42(7): 552-556. doi:10.3760/cma.j.issn.1009-9158.2019.07.011 LONG Yan, MA Yinting, SUN Yuanyuan, et al. The prevalence of common genetic deafness related mutation detected by microarray and follow-up in pregnant women in Beijing[J]. Chinese Journal of Laboratory Medicine, 2019, 42(7): 552-556. doi:10.3760/cma.j.issn.1009-9158.2019.07.011
[12] Shang H, Yan D, Tayebi N, et al. Targeted next-generation sequencing of a deafness gene panel(MiamiOtoGenes)analysis in families unsuitable for linkage analysis[J]. Biomed Res Int, 2018: 3103986. doi:10.1155/2018/3103986
[13] 王秋菊. 新生儿听力及基因联合筛查: 中国模式与未来发展[J]. 临床耳鼻咽喉头颈外科杂志, 2014, 28(22): 1733-1736. doi: 10.13201/j.issn.1001-1781.2014.22.002 WANG Qiuju. Newborn hearing combined gene screening—China model and future development[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2014, 28(22): 1733-1736. doi: 10.13201/j.issn.1001-1781.2014.22.002
[14] 王秋菊, 赵亚丽, 兰兰, 等. 新生儿聋病基因筛查实施方案与策略研究[J]. 中华耳鼻咽喉头颈外科杂志, 2007, 42(11): 809-813. doi:10.3760/j.issn: 1673-0860.2007.11.003 WANG Qiuju, ZHAO Yali, LAN Lan, et al. Studies of the strategy for newborn gene screening[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2007, 42(11): 809-813. doi:10.3760/j.issn: 1673-0860.2007.11.003
[15] 王秋菊. 新生儿聋病易感基因筛查的意义与策略[J]. 中国医学文摘-耳鼻咽喉科学分册, 2007, 22(1): 21-22 WANG Qiuju. Significance and strategy of screening susceptibility genes for neonatal deafness[J]. Chinese Medical Digest(Otorhinolaryngology), 2007, 22(1): 21-22
[16] Shearer AE, Shen J, Amr S, et al. A proposal for comprehensive newborn hearing screening to improve identification of deaf and hard-of-hearing children[J]. Genet Med, 2019, 21(11): 2614-2630. doi:10.1038/s41436-019-0563-5
[17] 李姗珊, 宋岩, 马秀岚. 新生儿重症监护病房高危新生儿听力筛查及诊断的随访研究[J]. 中国医科大学学报, 2020, 49(12): 1140-1142. doi:10.12007/j.issn.0258-4646.2020.12.018 LI Shanshan, SONG Yan, MA Xiulan. A follow-up study on hearing screening and diagnosis for high-risk newborns in a neonatal intensive care center[J]. Journal of China Medical University, 2020, 49(12): 1140-1142. doi:10.12007/j.issn.0258-4646.2020.12.018
[18] 孙秀艳, 尚丽新, 李冰, 等. 新生儿听力筛查联合耳聋基因检测临床价值研究[J]. 人民军医, 2020, 63(2): 159-161, 168. doi:10.3969/j.issn.1006-7299.2019.01.004 SUN Xiuyan, SHANG Lixin, LI Bing, et al. Clinical value of newborn hearing screening combined with deafness gene detection[J]. People's Military Surgeon, 2020, 63(2): 159-161, 168. doi:10.3969/j.issn.1006-7299.2019.01.004
[19] 韩德民. 新生儿听力及耳聋基因联合筛查[J]. 中国医学文摘耳鼻咽喉科学, 2012, 27(6): 290-292. doi: 10.3760/j.issn: 1673-0860.2007.11.003 HAN Demin. Joint screening of newborn hearing and deafness genes[J]. Chinese Medical Digest(Otorhinolaryngology), 2012, 27(6): 290-292. doi: 10.3760/j.issn: 1673-0860.2007.11.003
[20] 李茜, 王诺扬, 童鸣, 等. 10 313例新生儿听力与耳聋易感基因联合筛查结果分析[J]. 临床检验杂志, 2022, 40(6): 475-480. doi: 10.13602/j.cnki.jcls.2022.06.15 LI Qian, WANG Nuoyang, TONG Ming, et al. Analysis of combined screening of hearing and deafness-related genes in 10 313 newborns[J]. Chinese Journal of Clinical Laboratory Science, 2022, 40(6): 475-480. doi: 10.13602/j.cnki.jcls.2022.06.15
[21] 王川, 尚煜. 9 755例新生儿听力与耳聋基因联合筛查结果分析[J]. 听力学及言语疾病杂志, 2019, 27(1): 16-19. doi: 10.3969/j.issn.1006-7299.2019.01.004 WANG Chuan, SHANG Yu. Retrospective analysis of combined hearing and deafness gene screening in 9 755 newborns[J]. Journal of Audiology and Speech Pathology, 2019, 27(1): 16-19. doi: 10.3969/j.issn.1006-7299.2019.01.004
[22] Vona B, Nanda I, Hofrichter MAH, et al. Non-syndromic hearing loss gene identification: a brief history and glimpse into the future[J]. Mol Cell Probes, 2015, 29(5): 260-270. doi:10.1016/j.mcp.2015.03.008
[23] 王团, 蔡爱军, 张运波, 等. 儿童双耳感音神经性聋临床特点及GJB2与GJB3基因突变分析[J]. 中国耳鼻咽喉颅底外科杂志, 2022, 28(4): 52-56. doi:10.11798/j.issn.1007-1520.202221237 WANG Tuan, CAI Aijun, ZHANG Yunbo, et al. Clinical features and mutation analysis of GJB2 and GJB3 genes in children with binaural sensorineural hearing loss[J]. Chinese Journal of Otorhinolaryngology-Skull Base Surgery, 2022, 28(4): 52-56. doi:10.11798/j.issn.1007-1520.202221237
[24] Wang QJ, Xiang JL, Sun J, et al. Nationwide population genetic screening improves outcomes of newborn screening for hearing loss in China[J]. Genet Med, 2019, 21(10): 2231-2238. doi:10.1038/s41436-019-0481-6
[25] 王欣, 孙云, 王彦云, 等. 芯片捕获二代测序技术在新生儿疾病筛查中的应用[J]. 临床检验杂志, 2022, 40(3): 173-178. doi:10.13602/j.cnki.jcls.2022.03.03 WANG Xin, SUN Yun, WANG Yanyan, et al. Clinical application of newborn screening based on chip capture second-generation sequencing technology[J]. Chinese Journal of Clinical Laboratory Science, 2022, 40(3): 173-178. doi:10.13602/j.cnki.jcls.2022.03.03
[26] 唐俊湘, 孙玉秀, 王朝红, 等. 2 363例新生儿4个常见遗传性耳聋基因突变筛查结果分析[J]. 山东医药, 2015, 55(32): 76-77, 78. doi: 10.3969/j.issn.1002-266X.2015.32.032 TANG Junxiang, SUN Yuxiu, WANG Chaohong, et al. Analysis of screening results of four common genetic deafness gene mutations in 2 363 newborns[J]. Shandong Medical Journal, 2015, 55(32): 76-77. doi: 10.3969/j.issn.1002-266X.2015.32.032
[27] Lin YF, Lin HC, Tsai CL, et al. GJB2 mutation spectrum in the Taiwanese population and genotype-phenotype comparisons in patients with hearing loss carrying GJB2 c.109G>A and c.235delC mutations[J]. Hear Res, 2022, 413: 108135. doi:10.1016/j.heares.2020.108135
[28] 胡华梅, 胡华, 董艳玲, 等. 新生儿中常见的9个耳聋基因突变位点筛查分析[J]. 第三军医大学学报, 2012, 34(2): 96-98. doi: 10.3969/j.issn.1671-2420.2006.05.014 HU Huamei, HU Hua, DONG Yanling, et al. Mutation analysis of 9 mutation spots related to neonatal deafness by DNA microarray[J]. Acta Academiae Medicinae Militaris Tertiae, 2012, 34(2): 96-98. doi: 10.3969/j.issn.1671-2420.2006.05.014
[29] 李为,赵毅,葛玥铭,等. 双卵双胎和单卵双胎新生儿听力筛查结果分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 1-6. doi: 10.6040/j.issn.1673-3770.0.2022.065 LI Wei, ZHAO Yi, GE Yueming, et al. Analysis of hearing screening results of dizygotic and monozygotic twins[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 1-6. doi: 10.6040/j.issn.1673-3770.0.2022.065
[30] 郭云天晓. 非综合征遗传性耳聋家系的分子遗传学致病因素研究及遗传咨询[D]. 大连: 大连医科大学,2021
[31] Brownstein Z, Friedman LM, Shahin H, et al. Targeted genomic capture and massively parallel sequencing to identify genes for hereditary hearing loss in middle eastern families[J]. Genome Biology, 2011, 12(9): 1-11. doi:10.1186/gb-2011-12-9-r89
[1] LIU Shuangshuang, NIU Yuping, SUN Yue, MI Zhaoyuan, SHI Guizhi. Screening analysis of fourteen hereditary deafness gene mutation in patients with Non-syndromic hearing loss in Shandong province. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(4): 63-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!