Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2019, Vol. 33 ›› Issue (2): 149-158.doi: 10.6040/j.issn.1673-3770.0.2018.325
TANG Wei1, LI Yuanbin1,2
CLC Number:
[1] 沈为民, 薛鸣球. 非球面眼镜片的像差分析和设计[J]. 光学学报, 2002, 22(6): 743-748. doi:10.3321/j.issn:0253-2239.2002.06.025. SHEN Weimin, XUE Mingqiu. Aberration analysis and optical design of aspheric spectacle lens[J]. Acta Optica Sinica, 2002, 22(6): 743-748. doi: 10.3321/j.issn: 0253-2239.2002.06.025. [2] 金红颖, 王勤美, 王丹梅, 等. 角膜屈光手术对眼波前像差的影响[J]. 中华眼科杂志, 2003(6): 328-334. JIN Hongying, WANG Qinmei, WANG Danmei, et al. Influence of corneal refractive surgery on wavefront aberrations of human eye[J]. Chinese Journal of Ophthalmology, 2003(6): 328-334. [3] Sachdev N, Ormonde SE, Sherwin T, et al. Higher-order aberrations of lenticular opacities[J]. Journal of Cataract & Refractive Surgery, 2004, 30(8): 1642-1648. doi: 10.1016/j.jcrs.2004.02.048. [4] Díaz-Doutón F, Benito A, Pujol J, et al. Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument[J]. Invest Ophthalmol Vis Sci, 2006, 47(4): 1710-1716. doi: 10.1167/iovs.05-1049. [5] Spadea L, Maraone G, Verboschi F, et al. Effect of corneal light scatter on vision: a review of the literature[J]. Int J Ophthalmol, 2016, 9(3): 459-464. doi: 10.18240/ijo.2016.03.24. [6] Vincent Nourrit,Jeremiah Mf Kelly. Intraocular Scatter and Visual Performance[J]. Optometry in Practice, 2009, 10(3). [7] Filgueira CP, Sánchez RF, Colombo EM, et al. Discrimination between surgical and nonsurgical nuclear cataracts based on ROC analysis[J]. Curr Eye Res, 2014, 39(12): 1187-1193. doi: 10.3109/02713683.2014.907432. [8] Artal P, Benito A, Pérez GM, et al. An objective scatter index based on double-pass retinal images of a point source to classify cataracts[J]. PLoS One, 2011, 6(2): e16823. doi: 10.1371/journal.pone.0016823. [9] Olsen T, Corydon L, Gimbel H. Intraocular lens power calculation with an improved anterior chamber depth prediction algorithm[J]. J Cataract Refract Surg, 1995, 21(3): 313-319. [10] Sheng H, Bottjer CA, Bullimore MA. Ocular component measurement using the zeiss IOLMaster[J]. Optometry and Vision Science, 2004, 81(1): 27-34. doi: 10.1097/00006324-200401000-00007. [11] Roy A, Das S, Sahu SK, et al. Ultrasound biometry vs. IOL master[J]. Ophthalmology, 2012, 119(9): 1937-1937.e2. doi: 10.1016/j.ophtha.2012.06.006. [12] Kim SM, Choi J, Choi S. Refractive predictability of partial coherence interferometry and factors that can affect it[J]. Korean J Ophthalmol, 2009, 23(1): 6-12. doi: 10.3341/kjo.2009.23.1.6. [13] Buckhurst PJ, Wolffsohn JS, Shah S, et al. A new optical low coherence reflectometry device for ocular biometry in cataract patients[J]. Br J Ophthalmol, 2009, 93(7): 949-953. doi: 10.1136/bjo.2008.156554. [14] Chen YA, Hirnschall N, Findl O. Evaluation of 2 new optical biometry devices and comparison with the current gold standard biometer[J]. J Cataract Refract Surg, 2011, 37(3): 513-517. doi: 10.1016/j.jcrs.2010.10.041. [15] ODonnell C, Hartwig A, Radhakrishnan H. Comparison of central corneal thickness and anterior chamber depth measured using LenStar LS900, pentacam, and visante AS-OCT[J]. Cornea, 2012, 31(9): 983-988. doi: 10.1097/ico.0b013e31823f8e2f. [16] Koodziejczyk W, Gaecki T, Łazicka-Gaecka M, et al. Comparison of the biometric measurements obtained using noncontact optical biometers LenStar LS 900 and IOL Master V.5[J]. Klin Oczna, 2011, 113(1/2/3): 47-51. [17] Stattin M, Zehetner C, Bechrakis NE, et al. Comparison of IOL-Master 500 vs. Lenstar LS900 concerning the calculation of target refraction: A retrospective analysis[J]. Ophthalmologe, 2015, 112(5): 444-450. doi: 10.1007/s00347-014-3143-8. [18] Gursoy H, Sahin A, Basmak H, et al. Lenstar versus ultrasound for ocular biometry in a pediatric population[J]. Optometry and Vision Science, 2011, 88(8): 912-919. doi: 10.1097/opx.0b013e31821cc4d6. [19] Ho JD, Tsai CY, Tsai RJ, et al. Validity of the keratometric index: evaluation by the Pentacam rotating Scheimpflug camera[J]. J Cataract Refract Surg, 2008, 34(1): 137-145. doi: 10.1016/j.jcrs.2007.09.033. [20] Ciolino JB, Khachikian SS, Belin MW. Comparison of corneal thickness measurements by ultrasound and scheimpflug photography in eyes that have undergone laser in situ keratomileusis[J]. Am J Ophthalmol, 2008, 145(1): 75-80. doi: 10.1016/j.ajo.2007.08.026. [21] 曹乾忠, 田臻, 陈茜, 等. Pentacam在分析晶状体后囊膜透明性中的临床价值[J]. 中华实验眼科杂志, 2016, 34(3): 260-264. doi: 10.3760/cma.j.issn.2095-0160.2016.03.014. CAO Qianzhong, TIAN Zhen, CHEN Qian, et al. Assessment of posterior capsule penetrability by Pentacam Scheimpflug system[J]. Chinese Journal of Experimental Ophthalmology, 2016, 34(3): 260-264. doi: 10.3760/cma.j.issn.2095-0160.2016.03.014. [22] Thibos LN, Hong X, Bradley A, et al. Statistical variation of aberration structure and image quality in a normal population of healthy eyes[J]. J Opt Soc Am A Opt Image Sci Vis, 2002, 19(12): 2329-2348. [23] Lee H, Chung JL, Kim EK, et al. Univariate and bivariate polar value analysis of corneal astigmatism measurements obtained with 6 instruments[J]. J Cataract Refract Surg, 2012, 38(9): 1608-1615. doi: 10.1016/j.jcrs.2012.04.035. [24] Wilson SE. Wave-front analysis: are we missing something?[J]. American Journal of Ophthalmology, 2003, 136(2): 340-342. doi: 10.1016/s0002-9394(03)00272-1. [25] 栗勇涛, 张红, 田芳, 等. iTrace像差仪在Toric人工晶状体植入术后轴位测量中的应用[J]. 眼科新进展, 2017, 37(2): 161-163. doi: 10.13389/j.cnki.rao.2017.0042. LI Yongtao, ZHANG Hong, TIAN Fang, et al. Application of iTrace aberration in measuring lens alignment after Toric intraocular lens implantation[J]. Recent Advances in Ophthalmology, 2017, 37(2): 161-163. doi: 10.13389/j.cnki.rao.2017.0042. [26] 毕宏生. 精准屈光性白内障手术规划[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 1-4. doi: 10.6040/j.issn.1673-3770.1.2017.026. BI Hongsheng. Design of treatment protocol in refractive cataract surgery is important for postoperative visual outcomes[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017, 31(4): 1-4. doi: 10.6040/j.issn.1673-3770.1.2017.026. [27] Fine IH, Packer M, Hoffman RS. New phacoemulsification technologies[J]. Journal of Cataract & Refractive Surgery, 2002, 28(6): 1054-1060. doi: 10.1016/s0886-3350(02)01399-8. [28] Olson RJ, Jin YA,, et al. Legacy AdvanTec and sovereign WhiteStar[J]. Journal of Cataract & Refractive Surgery, 2004, 30(5): 1109-1113. doi: 10.1016/j.jcrs.2003.12.048. [29] 彭涛, 陈钢锋. 冷超声乳化白内障吸除手术应用于硬核白内障的疗效[J]. 中国老年学杂志, 2014, 34(8): 2265-2266,2267. doi: 10.3969/j.issn.1005-9202.2014.08.122. [30] 姚克, 叶盼盼. 我国近五年白内障研究进展和展望[J]. 中华眼科杂志, 2010, 46(10): 888-892. doi: 10.3760/cma.j.issn.0412-4081.2010.10.004. YAO Ke, YE Panpan. Advances and prospects in studies of cataract in the past five years in China[J]. Chinese Journal of Ophthalmology, 2010, 46(10): 888-892. doi: 10.3760/cma.j.issn.0412-4081.2010.10.004. [31] 姚克, 王玮, 吴炜, 等. 同轴1.8 mm微切口超声乳化白内障手术临床效果评价[J]. 中华眼科杂志, 2011, 47(10): 903-907. doi: 10.3760/cma.j.issn.0412-4081.2011.10.009. YAO Ke, WANG Wei, WU Wei, et al. Clinical evaluation on the coaxial 1.8 mm microincision cataract surgery[J]. Chinese Journal of Ophthalmology, 2011, 47(10): 903-907. doi: 10.3760/cma.j.issn.0412-4081.2011.10.009. [32] 赵堪兴, 杨培增. 眼科学[M]. 8版. 北京: 人民卫生出版社, 2013. [33] Nagy Z, Takacs A, Filkorn T, et al. Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery[J]. J Refract Surg, 2009, 25(12): 1053-1060. doi: 10.3928/1081597X-20091117-04. [34] Abouzeid H, Ferrini W. Femtosecond-laser assisted cataract surgery: a review[J]. Acta Ophthalmol, 2014, 92(7): 597-603. doi: 10.1111/aos.12416. [35] Nagy ZZ, Kránitz K, Takacs AI, et al. Comparison of intraocular lens decentration parameters after femtosecond and manual capsulotomies[J]. J Refract Surg, 2011, 27(8): 564-569. doi: 10.3928/1081597X-20110607-01. [36] Filkorn T, Kovács I, Takács A, et al. Comparison of IOL power calculation and refractive outcome after laser refractive cataract surgery with a femtosecond laser versus conventional phacoemulsification[J]. J Refract Surg, 2012, 28(8): 540-544. doi: 10.3928/1081597X-20120703-04. [37] Ranjini H, Murthy PR, Murthy GJ, et al. Femtosecond laser-assisted cataract surgery versus 2.2 mm clear corneal phacoemulsification[J]. Indian J Ophthalmol, 2017, 65(10): 942-948. doi: 10.4103/ijo.IJO_152_17. [38] He LM, Sheehy K, Culbertson W. Femtosecond laser-assisted cataract surgery[J]. Current Opinion in Ophthalmology, 2010: 1. doi: 10.1097/icu.0b013e3283414f76. [39] Pajic B, Cvejic Z, Pajic-Eggspuehler B. Cataract surgery performed by high frequency LDV Z8 femtosecond laser: safety, efficacy, and its physical properties[J]. Sensors(Basel), 2017, 17(6): E1429. doi: 10.3390/s17061429. [40] Asena BS, Karahan E, Kaskaloglu M. Retinal and choroidal thickness after femtosecond laser-assisted and standard phacoemulsification[J]. Clin Ophthalmol, 2017, 11: 1541-1547. doi: 10.2147/OPTH.S127792. [41] Wei YJ, Xu LX, Song H. Application of Corvis ST to evaluate the effect of femtosecond laser-assisted cataract surgery on corneal biomechanics[J]. Exp Ther Med, 2017, 14(2): 1626-1632. doi: 10.3892/etm.2017.4675. [42] Ye Z, Li ZH, He SZ. A meta-analysis comparing postoperative complications and outcomes of femtosecond laser-assisted cataract surgery versus conventional phacoemulsification for cataract[J]. J Ophthalmol, 2017, 2017: 3849152. doi: 10.1155/2017/3849152. [43] Chen XY, Yu YH, Song XH, et al. Clinical outcomes of femtosecond laser-assisted cataract surgery versus conventional phacoemulsification surgery for hard nuclear cataracts[J]. J Cataract Refract Surg, 2017, 43(4): 486-491. doi: 10.1016/j.jcrs.2017.01.010. [44] Chen PQ, Zhu YN, Yao K. Descemet membrane detachment in femtosecond laser-assisted cataract surgery: a case report[J]. BMC Ophthalmol, 2017, 17(1): 169. doi: 10.1186/s12886-017-0566-4. [45] Rostami B, Tian J, Jackson N, et al. High rate of early posterior capsule opacification following femtosecond laser-assisted cataract surgery[J]. Case Rep Ophthalmol, 2016, 7(3): 213-217. doi: 10.1159/000449124. [46] Lin HY, Chen HY, Fam HB, et al. Comparison of corneal power obtained from VERION image-guided surgery system and four other devices[J]. Clin Ophthalmol, 2017, 11: 1291-1299. doi: 10.2147/OPTH.S137878. [47] Webers VSC, Bauer NJC, Visser N, et al. Image-guided system versus manual marking for toric intraocular lens alignment in cataract surgery[J]. J Cataract Refract Surg, 2017, 43(6): 781-788. doi: 10.1016/j.jcrs.2017.03.041. [48] Hura AS, Osher RH. Comparing the zeiss callisto eye and the alcon verion image guided system toric lens alignment technologies[J]. J Refract Surg, 2017, 33(7): 482-487. doi: 10.3928/1081597X-20170504-02. [49] Melles RB, Holladay JT, Chang WJ. Accuracy of intraocular lens calculation formulas[J]. Ophthalmology, 2018, 125(2): 169-178. doi: 10.1016/j.ophtha.2017.08.027. [50] Gökce SE, Zeiter JH, Weikert MP, et al. Intraocular lens power calculations in short eyes using 7 formulas[J]. Journal of Cataract & Refractive Surgery, 2017, 43(7): 892-897. doi: 10.1016/j.jcrs.2017.07.004. [51] Ladas JG, Siddiqui AA, Devgan U, et al. A 3-d “super surface” combining modern intraocular lens formulas to generate a “super formula” and maximize accuracy[J]. JAMA Ophthalmol, 2015, 133(12): 1431-1436. doi: 10.1001/jamaophthalmol.2015.3832. [52] Voytsekhivskyy OV. Development and clinical accuracy of a new intraocular lens power formula(VRF)compared to other formulas[J]. Am J Ophthalmol, 2018, 185: 56-67. doi: 10.1016/j.ajo.2017.10.020. [53] Lin L, Chang PJ, Xie JL, et al. Sustained accuracy improvement in intraocular lens power calculation with the application of quality control circle[J]. Sci Rep, 2017, 7(1): 14852. doi: 10.1038/s41598-017-14171-9. [54] Choi J, Schwiegerling J. Optical performance measurement and night driving simulation of ReSTOR, ReZoom, and tecnis multifocal intraocular lenses in a model eye[J]. JRS, 2008, 24(3): 218-222. doi: 10.3928/1081597x-20080301-02. [55] Davison JA, Simpson MJ. History and development of the apodized diffractive intraocular lens[J]. J Cataract Refract Surg, 2006, 32(5): 849-858. doi: 10.1016/j.jcrs.2006.02.006. [56] Versteeg FFH. Multifocal IOLs for presbyopia[J]. Journal of Cataract & Refractive Surgery, 2005, 31(7): 1266. doi: 10.1016/j.jcrs.2005.06.018. [57] Blaylock JF, Si ZM, Aitchison S, et al. Visual function and change in quality of life after bilateral refractive lens exchange with the ReSTOR multifocal intraocular lens[J]. J Refract Surg, 2008, 24(3): 265-273. doi: 10.3928/1081597X-20080301-08. [58] Mester U, Fahle M, Ott G, et al. Functional vision training after MIOL implantation[J]. Ophthalmologe,2008,105(6):533-7. doi: 10.1007/s00347-008-1746-7. [59] Superstein R, Boyaner D, Overbury O. Functional complaints, visual acuity, spatial contrast sensitivity, and glare disability in preoperative and postoperative cataract patients[J]. J Cataract Refract Surg, 1999, 25(4): 575-581. [60] Holladay JT, Piers PA, Koranyi G, et al. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes[J]. J Refract Surg, 2002, 18(6): 683-691. [61] Dietze HH, Cox MJ. Limitations of correcting spherical aberration with aspheric intraocular lenses[J]. J Refract Surg, 2005, 21(5): S541-S546. [62] Rocha KM, Soriano ES, Chamon W, et al. Spherical aberration and depth of focus in eyes implanted with aspheric and spherical intraocular lenses: a prospective randomized study[J]. Ophthalmology, 2007, 114(11): 2050-2054. doi: 10.1016/j.ophtha.2007.01.024. [63] 卢奕, 季樱红. 重视可调节型和多焦点人工晶状体的临床应用局限性[J]. 中华眼科杂志, 2009, 45(8): 676-678. doi:10.3760/cma.j.issn.0412-4081.2009.08.002. LU Yi, JI Yinghong. To pay attention to clinical limitations of accommodative and multifocal intraocular lens[J]. Chinese Journal of Ophthalmology, 2009, 45(8): 676-678. doi: 10.3760/cma.j.issn.0412-4081.2009.08.002. [64] McAlinden C, Moore JE. Multifocal intraocular lens with a surface-embedded near section: Short-term clinical outcomes[J]. J Cataract Refract Surg, 2011, 37(3): 441-445. doi: 10.1016/j.jcrs.2010.08.055. [65] Saiki M, Negishi K, Dogru M, et al. Biconvex posterior chamber accommodating intraocular lens implantation after cataract surgery: long-term outcomes[J]. J Cataract Refract Surg, 2010, 36(4): 603-608. doi: 10.1016/j.jcrs.2009.11.008. [66] Patel S, Alió JL, Feinbaum C. Comparison of Acri. Smart multifocal IOL, crystalens AT-45 accommodative IOL, and Technovision presbyLASIK for correcting presbyopia[J]. J Refract Surg, 2008, 24(3): 294-299. doi: 10.3928/1081597X-20080301-12. [67] Lyall DA, Srinivasan S, Ng J, et al. Changes in corneal astigmatism among patients with visually significant cataract[J]. Can J Ophthalmol, 2014, 49(3): 297-303. doi: 10.1016/j.jcjo.2014.02.001. [68] Kohnen S, Neuber R, Kohnen T. Effect of temporal and nasal unsutured limbal tunnel incisions on induced astigmatism after phacoemulsification[J]. J Cataract Refract Surg, 2002, 28(5): 821-825. [69] Rao SN, Konowal A, Murchison AE, et al. Enlargement of the temporal clear corneal cataract incision to treat pre-existing astigmatism[J]. J Refract Surg, 2002, 18(4): 463-467. [70] Pfleger T, Skorpik C, Menapace R, et al. Long-term course of induced astigmatism after clear corneal incision cataract surgery[J]. J Cataract Refract Surg, 1996, 22(1): 72-77. [71] Lever J, Dahan E. Opposite clear corneal incisions to correct pre-existing astigmatism in cataract surgery[J]. J Cataract Refract Surg, 2000, 26(6): 803-805. [72] Till JS, Yoder PR Jr, Wilcox TK, et al. Toric intraocular lens implantation: 100 consecutive cases[J]. J Cataract Refract Surg, 2002, 28(2): 295-301. [73] Viestenz A, Seitz B, Langenbucher A. Evaluating the eye's rotational stability during standard photography: effect on determining the axial orientation of toric intraocular lenses[J]. J Cataract Refract Surg, 2005, 31(3): 557-561. doi: 10.1016/j.jcrs.2004.07.019. [74] Marques EF, Ferreira TB. Comparison of visual outcomes of 2 diffractive trifocal intraocular lenses. J Cataract Refract Surg, 2015, 41(2):354-363. doi: 10.1016/j.jcrs.2014.05.048. [75] Kretz FT, Breyer D, Diakonis VF3,et al. Clinical outcomes after binocular implantation of a new trifocal diffractive intraocular lens[J]. J Ophthalmol,2015:962891. doi: 10.1155/2015/962891. [76] Mencucci R, Favuzza E, Caporossi O, et al. Visual performance, reading ability and patient satisfaction after implantation of a diffractive trifocal intraocular lens[J]. Clin Ophthalmol, 2017, 11: 1987-1993. doi: 10.2147/OPTH.S142860. [77] Cochener B, Vryghem J, Rozot P, et al. Clinical outcomes with a trifocal intraocular lens: a multicenter study[J]. J Refract Surg, 2014, 30(11): 762-768. doi: 10.3928/1081597X-20141021-08. [78] Kretz FT, Attia MA, Linz K, et al. Level of binocular pseudoaccommodation in patients implanted with an apodised, diffractive and trifocal multifocal intraocular lens[J]. Klin Monbl Augenheilkd, 2015, 232(8): 947-952. doi: 10.1055/s-0035-1545833. [79] Sachdev GS, Ramamurthy S, Sharma U, et al. Visual outcomes of patients bilaterally implanted with the extended range of vision intraocular lens: A prospective study[J]. Indian J Ophthalmol, 2018, 66(3): 407-410. doi: 10.4103/ijo.IJO_813_17. [80] Attia MSA, Auffarth GU, Kretz FTA, et al. Clinical evaluation of an extended depth of focus intraocular lens with the salzburg reading desk[J]. J Refract Surg, 2017, 33(10): 664-669. doi: 10.3928/1081597X-20170621-08. |
[1] | BI Hongsheng. Design of treatment protocol in refractive cataract surgery is important for postoperative visual outcomes. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 1-4. |
|