Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (3): 104-110.doi: 10.6040/j.issn.1673-3770.0.2022.172
• 综述 • Previous Articles
LI Yanan1, LIANG Hui2
CLC Number:
[1] Paver EC, Currie AM, Gupta R, et al. Human papilloma virus related squamous cell carcinomas of the head and neck: diagnosis, clinical implications and detection of HPV[J]. Pathology, 2020, 52(2): 179-191. doi:10.1016/j.pathol.2019.10.008 [2] Lechner M, Liu J, Masterson L, et al. HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management[J]. Nat Rev Clin Oncol, 2022, 19(5): 306-327. doi:10.1038/s41571-022-00603-7 [3] Gelwan E, Malm IJ, Khararjian A, et al. Nonuniform distribution of high-risk human papillomavirus in squamous cell carcinomas of the oropharynx: rethinking the anatomic boundaries of oral and oropharyngeal carcinoma from an oncologic HPV perspective[J]. Am J Surg Pathol, 2017, 41(12): 1722-1728. doi:10.1097/PAS.0000000000000929 [4] Araldi RP, Sant'Ana TA, Módolo DG, et al. The human papillomavirus(HPV)-related cancer biology: an overview[J]. Biomed Pharmacother, 2018, 106: 1537-1556. doi:10.1016/j.biopha.2018.06.149 [5] Dunne EF, Park IU. HPV and HPV-associated diseases[J]. Infect Dis Clin North Am, 2013, 27(4): 765-778. doi:10.1016/j.idc.2013.09.001 [6] Bravo IG, Félez-Sánchez M. Papillomaviruses: Viral evolution, cancer and evolutionary medicine[J]. Evol Med Public Health, 2015,(1): 32-51. doi:10.1093/emph/eov003 [7] Zhai L, Tumban E. Gardasil-9: a global survey of projected efficacy[J]. Antiviral Res, 2016, 130(6): 101-109. doi:10.1016/j.antiviral.2016.03.016 [8] Taberna M, Mena M, Pavón MA, et al. Human papillomavirus-related oropharyngeal cancer[J]. Ann Oncol, 2017, 28(10): 2386-2398. doi:10.1093/annonc/mdx304 [9] Snijders PJ, Cromme FV, van den Brule AJ, et al. Prevalence and expression of human papillomavirus in tonsillar carcinomas, indicating a possible viral etiology[J]. Int J Cancer, 1992, 51(6): 845-850. doi:10.1002/ijc.2910510602 [10] Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies[J]. Braz J Microbiol, 2021, 52(4): 1701-1718. doi:10.1007/s42770-021-00624-x [11] Rieth KKS, Gill SR, Lott-Limbach AA, et al. Prevalence of high-risk human papillomavirus in tonsil tissue in healthy adults and colocalization in biofilm of tonsillar crypts[J]. JAMA Otolaryngol Head Neck Surg, 2018, 144(3): 231-237. doi:10.1001/jamaoto.2017.2916 [12] Donmez HG, Sahal G, Akgor U, et al. The relationship between the presence of HPV infection and biofilm formation in cervicovaginal smears[J]. Infection, 2020, 48(5): 735-740. doi:10.1007/s15010-020-01478-5 [13] di Paola M, Sani C, Clemente AM, et al. Characterization of cervico-vaginal microbiota in women developing persistent high-risk Human Papillomavirus infection[J]. Sci Rep, 2017, 7(1): 10200. doi:10.1038/s41598-017-09842-6 [14] Black CC, Ogomo C. Does pTis exist in HPV-driven tonsillar carcinomas? An ultrastructural review and examination of two cases[J]. Ultrastruct Pathol, 2017, 41(1): 55-61. doi:10.1080/01913123.2016.1258020 [15] Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma[J]. Proc Natl Acad Sci USA, 2007, 104(3): 973-978. doi:10.1073/pnas.0610117104 [16] Wu V, Auchman M, Mollica PA, et al. ALDH1A1 positive cells are a unique component of the tonsillar crypt niche and are lost along with NGFR positive stem cells during tumourigenesis[J]. Pathology, 2018, 50(5): 524-529. doi:10.1016/j.pathol.2018.03.002 [17] Kang SYC, Kannan N, Zhang L, et al. Characterization of epithelial progenitors in normal human palatine tonsils and their HPV16 E6/E7-induced perturbation[J]. Stem Cell Reports, 2015, 5(6): 1210-1225. doi:10.1016/j.stemcr.2015.09.020 [18] von Witzleben A, Wang C, Laban S, et al. HNSCC: tumour antigens and their targeting by immunotherapy[J]. Cells, 2020, 9(9): 2103. doi:10.3390/cells9092103 [19] Rahrotaban S, Mahdavi N, Abdollahi A, et al. Carcinoma-associated fibroblasts are a common finding in the microenvironment of HPV-positive oropharyngeal squamous cell carcinoma[J]. Appl Immunohistochem Mol Morphol, 2019, 27(9): 683-688. doi:10.1097/PAI.0000000000000687 [20] Krishnamurthy S, Dong ZH, Vodopyanov D, et al. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells[J]. Cancer Res, 2010, 70(23): 9969-9978. doi:10.1158/0008-5472.CAN-10-1712 [21] YU X, XU J, XU D, et al. Comprehensive analysis of the carcinogenic process, tumor microenvironment, and drug response in HPV-positive cancers[J]. Frontiers in Oncology, 2022, 3(22): 842060. doi:10.3389/fonc.2022.842060 [22] Gurin D, Slavik M, Hermanova M, et al. The tumor immune microenvironment and its implications for clinical outcome in patients with oropharyngeal squamous cell carcinoma[J]. J Oral Pathol Med, 2020, 49(9): 886-896. doi:10.1111/jop.13055 [23] Nakamura K, Smyth MJ. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment[J]. Cell Mol Immunol, 2020, 17(1): 1-12. doi:10.1038/s41423-019-0306-1 [24] van Steenwijk PJDV, Ramwadhdoebe TH, Goedemans R, et al. Tumor-infiltrating CD14-positive myeloid cells and CD8-positive T-cells prolong survival in patients with cervical carcinoma[J]. Int J Cancer, 2013, 133(12): 2884-2894. doi:10.1002/ijc.28309 [25] Estêvão D, Costa NR, Gil da Costa RM, et al. Hallmarks of HPV carcinogenesis: the role of E6, E7 and E5 oncoproteins in cellular malignancy[J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862(2): 153-162. doi:10.1016/j.bbagrm.2019.01.001 [26] Tommasino M. The human papillomavirus family and its role in carcinogenesis[J]. Semin Cancer Biol, 2014, 6(26): 13-21. doi:10.1016/j.semcancer.2013.11.002 [27] Bergvall M, Melendy T, Archambault J. The E1 proteins[J]. Virology, 2013, 445(1/2): 35-56. doi:10.1016/j.virol.2013.07.020 [28] Hughes FJ, Romanos MA. E1 protein of human papillomavirus is a DNA helicase/ATPase[J]. Nucleic Acids Res, 1993, 21(25): 5817-5823. doi:10.1093/nar/21.25.5817 [29] Castro-Muñoz LJ, Manzo-Merino J, Muñoz-Bello JO, et al. The Human Papillomavirus(HPV)E1 protein regulates the expression of cellular genes involved in immune response[J]. Sci Rep, 2019, 9(1): 13620. doi:10.1038/s41598-019-49886-4 [30] Anayannis NV, Schlecht NF, Ben-Dayan M, et al. Association of an intact E2 gene with higher HPV viral load, higher viral oncogene expression, and improved clinical outcome in HPV16 positive head and neck squamous cell carcinoma[J]. PLoS One, 2018, 13(2): e0191581. doi:10.1371/journal.pone.0191581 [31] Khan J, Davy CE, McIntosh PB, et al. Role of calpain in the formation of human papillomavirus type 16 E1^E4 amyloid fibers and reorganization of the keratin network[J]. J Virol, 2011, 85(19): 9984-9997. doi:10.1128/JVI.02158-10 [32] Griffin H, Soneji Y, van Baars R, et al. Stratification of HPV-induced cervical pathology using the virally encoded molecular marker E4 in combination with p16 or MCM[J]. Mod Pathol, 2015, 28(7): 977-993. doi:10.1038/modpathol.2015.52 [33] Ilahi NE, Bhatti A. Impact of HPV E5 on viral life cycle via EGFR signaling[J]. Microb Pathog, 2020, 139: 103923. doi:10.1016/j.micpath.2019.103923 [34] Scott ML, Coleman DT, Kelly KC, et al. Human papillomavirus type 16 E5-mediated upregulation of Met in human keratinocytes[J]. Virology, 2018, 6(519): 1-11. doi:10.1016/j.virol.2018.03.021 [35] Scott ML, Woodby BL, Ulicny J, et al. Human papillomavirus 16 E5 inhibits interferon signaling and supports episomal viral maintenance[J]. J Virol, 2020, 94(2): e01582-e01519. doi:10.1128/JVI.01582-19 [36] Miyauchi S, Sanders PD, Guram K, et al. HPV16 E5 mediates resistance to PD-L1 blockade and can be targeted with rimantadine in head and neck cancer[J]. Cancer Res, 2020, 80(4): 732-746. doi:10.1158/0008-5472.CAN-19-1771 [37] Cole ST, Danos O. Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome. Phylogeny of papillomaviruses and repeated structure of the E6 and E7 gene products[J]. J Mol Biol, 1987, 193(4): 599-608. doi:10.1016/0022-2836(87)90343-3 [38] Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53[J]. Science, 1990, 248(4951): 76-79. doi:10.1126/science.2157286 [39] Avincsal MO, Kamizaki K, Jimbo N, et al. Oncogenic E6 and/or E7 proteins drive proliferation and invasion of human Papilloma virus-positive head and neck squamous cell cancer through upregulation of Ror2 expression[J]. Oncol Rep, 2021, 46(1): 148. doi:10.3892/or.2021.8099 [40] Delury CP, Marsh EK, James CD, et al. The role of protein kinase A regulation of the E6 PDZ-binding domain during the differentiation-dependent life cycle of human papillomavirus type 18[J]. J Virol, 2013, 87(17): 9463-9472. doi:10.1128/JVI.01234-13 [41] Chiang C, Pauli EK, Biryukov J, et al. The human papillomavirus E6 oncoprotein targets USP15 and TRIM25 to suppress RIG-I-mediated innate immune signaling[J]. J Virol, 2018, 92(6): e01737-e01717. doi:10.1128/JVI.01737-17 [42] Long D, Xu L, Deng Z, et al. HPV16 E6 enhances the radiosensitivity in HPV-positive human head and neck squamous cell carcinoma by regulating the miR-27a-3p/SMG1 axis[J]. Infect Agent Cancer, 2021, 16(1): 56. doi:10.1186/s13027-021-00397-w [43] Alsahafi EN, Thavaraj S, Sarvestani N, et al. EGFR overexpression increases radiotherapy response in HPV-positive head and neck cancer through inhibition of DNA damage repair and HPV E6 downregulation[J]. Cancer Lett, 2021, 498: 80-97. doi:10.1016/j.canlet.2020.10.035 [44] Song S, Liem A, Miller JA, et al. Human papillomavirus types 16 E6 and E7 contribute differently to carcinogenesis[J]. Virology, 2000, 267(2): 141-150. doi:10.1006/viro.1999.0106 [45] Müller H, Bracken AP, Vernell R, et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis[J]. Genes Dev, 2001, 15(3): 267-285. doi:10.1101/gad.864201 [46] Oton-Gonzalez L, Rotondo JC, Lanzillotti C, et al. Serum HPV16 E7 oncoprotein is a recurrence marker of oropharyngeal squamous cell carcinomas[J]. Cancers(Basel), 2021, 13(13): 3370. doi:10.3390/cancers13133370 [47] Bortnik V, Wu M, Julcher B, et al. Loss of HPV type 16 E7 restores cGAS-STING responses in human papilloma virus-positive oropharyngeal squamous cell carcinomas cells[J]. J Microbiol Immunol Infect, 2021, 54(4): 733-739. doi:10.1016/j.jmii.2020.07.010 [48] Corrales L, Glickman LH, McWhirter SM, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity[J]. Cell Rep, 2015, 11(7): 1018-1030. doi:10.1016/j.celrep.2015.04.031 [49] Lo Cigno I, Calati F, Borgogna C, et al. Human papillomavirus E7 oncoprotein subverts host innate immunity via SUV39H1-mediated epigenetic silencing of immune sensor genes[J]. J Virol, 2020, 94(4): e01812-e01819. doi:10.1128/JVI.01812-19 [50] Antonioli M, Pagni B, Vescovo T, et al. HPV sensitizes OPSCC cells to cisplatin-induced apoptosis by inhibiting autophagy through E7-mediated degradation of AMBRA1[J]. Autophagy, 2021, 17(10): 2842-2855. doi:10.1080/15548627.2020.1847444 [51] 袁硕卿, 张奥博, 董研博, 等. 人乳头状瘤病毒相关口咽鳞状细胞癌的特点及临床分析[J]. 中国耳鼻咽喉颅底外科杂志, 2021, 27(6): 691-697. doi: 10.11798/j.issn.1007-1520.202120288 YUAN Shuoqing, ZHANG Aobo, DONG Yanbo, et al. Characteristics and clinical analysis of human papillomavirus-related oropharyngeal squamous cell carcinoma[J]. Chinese Journal of Otorhinolaryngology-Skull Base Surgery, 2021, 27(6): 691-697. doi: 10.11798/j.issn.1007-1520.202120288 [52] Basukala O, Banks L. The not-so-good, the bad and the ugly: HPV E5, E6 and E7 oncoproteins in the orchestration of carcinogenesis[J]. Viruses, 2021, 13(10): 1892. doi:10.3390/v13101892 [53] Kirnbauer R, Booy F, Cheng N, et al. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic[J]. Proc Natl Acad Sci USA, 1992, 89(24): 12180-12184. doi:10.1073/pnas.89.24.12180 [54] Hernandez BY, Ton T, Shvetsov YB, et al. Human papillomavirus(HPV)L1 and L1-L2 virus-like particle-based multiplex assays for measurement of HPV virion antibodies[J]. Clin Vaccine Immunol, 2012, 19(9): 1348-1352. doi:10.1128/CVI.00191-12 |
[1] | NIU Zijie, XIAO Yang,WANG Jun,MA Lijinng. Progress in the surgical treatment of recurrent laryngeal papillomatosis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 96-100. |
[2] | Wenbin LEI,Qihong LIU. Progress in the treatment of recurrent respiratory papillomatosis using a CO2 laser [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(6): 8-12. |
[3] | Guojun Li1,2, MD, PhD, Xinliang Pan3, MD, PhD, Dapeng Lei3, MD, PhD et al. Sexual behavior and HPV infection in squamous cell carcinoma of the oropharynx [J]. J Otolaryngol Ophthalmol Shandong Univ, 2013, 27(1): 1-7. |
[4] | LU Guo-wei, WANG Lin, SUN Yan, LI Wei, HUA Hui, GE Rui-feng. Detection of different subtypes of HPV DNA in 57 cases of laryngeal carcinoma in easter of the shandong province [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2012, 26(6): 16-19. |
|