Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (4): 160-165.doi: 10.6040/j.issn.1673-3770.0.2022.179

Previous Articles    

Review of pyroptosis molecular mechanism and applications in head and neck squamous cell carcinoma

YANG Yingling1,2, GOU Haocheng2, FENG Jun2   

  1. 1. North Sichuan Medical College, Nanchong 637000, Sichuan, China2. Department of Otorhinolaryngology, The Second Clinical College of North Sichuan Medical College/Nanchong Central Hospital, Nanchong 637000, Sichuan, China
  • Published:2023-07-27

Abstract: Poor survival rates for cancer patients have led to further research on treatments to fight the disease. Programmed cell death(PCD)plays an important role not only in embryonic development, but also in occurrence and development of cancers. Pyroptosis is a type of PCD which has been receiving increasing attention for its dual role in tumors. This paper describes the molecular mechanisms of pyroptosis in terms of anti-cancer properties and aims to gain insight into its potential for cancer resistance. We also introduce related research on head and neck squamous cell carcinoma.

Key words: Pyroptosis, Head and neck squamous cell carcinoma, Gasdermin, Caspase

CLC Number: 

  • R739.6
[1] Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA A Cancer J Clin, 2015, 65(2): 87-108. doi:10.3322/caac.21262
[2] Shi JJ, Gao WQ, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245-254. doi:10.1016/j.tibs.2016.10.004
[3] Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens[J]. Immunol Rev, 2015, 265(1): 130-142. doi:10.1111/imr.12287
[4] Thi HTH, Hong S. Inflammasome as a therapeutic target for cancer prevention and treatment[J]. J Cancer Prev, 2017, 22(2): 62-73. doi:10.15430/jcp.2017.22.2.62
[5] Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages[J]. Nature, 1992, 358(6382): 167-169. doi:10.1038/358167a0
[6] D'Souza; Souza CA, Heitman J. Dismantling the Cryptococcus coat[J]. Trends Microbiol, 2001, 9(3): 112-113. doi:10.1016/s0966-842x(00)01945-4
[7] Shi JJ, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575): 660-665. doi:10.1038/nature15514
[8] Wang YP, Gao WQ, Shi XY, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103. doi:10.1038/nature22393
[9] Zhang ZB, Zhang Y, Xia SY, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity[J]. Nature, 2020, 579(7799): 415-420. doi:10.1038/s41586-020-2071-9
[10] Zhou ZW, He HB, Wang K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells[J]. Science, 2020, 368(May 29 TN.6494):965. doi:10.1126/science.aaz7548
[11] Tanaka S, Mizushina Y, Kato Y, et al. Functional conservation of Gsdma cluster genes specifically duplicated in the mouse genome[J]. G3(Bethesda), 2013, 3(10): 1843-1850. doi:10.1534/g3.113.007393
[12] Ding JJ, Wang K, Liu W, et al. Erratum: Pore-forming activity and structural autoinhibition of the gasdermin family[J]. Nature, 2016, 540(7631): 150. doi:10.1038/nature20106
[13] Yu P, Zhang X, Liu N, et al. Pyroptosis: mechanisms and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 128. doi:10.1038/s41392-021-00507-5
[14] Aachoui Y, Sagulenko V, Miao EA, et al. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection[J]. Curr Opin Microbiol, 2013, 16(3): 319-326. doi:10.1016/j.mib.2013.04.004
[15] Sborgi L, Rühl S, Mulvihill E, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death[J]. EMBO J, 2016, 35(16): 1766-1778. doi:10.15252/embj.201694696
[16] Chen X, He WT, Hu LC, et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis[J]. Cell Res, 2016, 26(9): 1007-1020. doi:10.1038/cr.2016.100
[17] Yi YS. Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses[J]. Immunology, 2017, 152(2): 207-217. doi:10.1111/imm.12787
[18] Aglietti RA, Estevez A, Gupta A, et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes[J]. Proc Natl Acad Sci USA, 2016, 113(28): 7858-7863. doi:10.1073/pnas.1607769113
[19] Sakahira H, Enari M, Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis[J]. Nature, 1998, 391(6662): 96-99. doi:10.1038/34214
[20] Elmore S. Apoptosis: a review of programmed cell death[J]. Toxicol Pathol, 2007, 35(4): 495-516. doi:10.1080/01926230701320337
[21] Shen XJ, Wang HB, Weng CH, et al. Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity[J]. Cell Death Dis, 2021, 12(2): 186. doi:10.1038/s41419-021-03458-5
[22] Xu YJ, Zheng L, Hu YW, et al. Pyroptosis and its relationship to atherosclerosis[J]. Clin Chimica Acta, 2018,47628-37. doi:10.1016/j.cca.2017.11.005
[23] Wu MJ, Wang Y, Yang D, et al. A PLK1 kinase inhibitor enhances the chemosensitivity of cisplatin by inducing pyroptosis in oesophageal squamous cell carcinoma[J]. EBioMedicine, 2019, 41 AND 244-255. doi:10.1016/j.ebiom.2019.02.012
[24] So D, Shin HW, Kim J, et al. Cervical cancer is addicted to SIRT1 disarming the AIM2 antiviral defense[J]. Oncogene, 2018, 37(38): 5191-5204. doi:10.1038/s41388-018-0339-4
[25] Awad F, Assrawi E, Louvrier C, et al. Photoaging and skin cancer: is the inflammasome the missing link? [J]. Mech Ageing Dev, 2018, 172131-137. doi:10.1016/j.mad.2018.03.003
[26] Wang YB, Yin B, Li DN, et al. GSDME mediates caspase-3-dependent pyroptosis in gastric cancer[J]. Biochem Biophys Res Commun, 2018, 495(1): 1418-1425. doi:10.1016/j.bbrc.2017.11.156
[27] Chen C, Wang B, Sun J, et al. DAC can restore expression of NALP1 to suppress tumor growth in colon cancer[J]. Cell Death Dis, 2015,6 e1602. doi:10.1038/cddis.2014.532
[28] 陈振波, 孟元光. 细胞焦亡分子机制及其在肿瘤中的研究进展[J]. 西南军医, 2021, 23(4): 332-336. doi:10.3969/j.issn.1672-7193.2021.04-06.009
[29] 高英, 陈微楠, 朱雪琼. 细胞焦亡的生物学机制及其在癌症中的作用研究进展[J]. 浙江医学, 2021, 43(4): 453-456. doi:10.12056/j.issn.1006-2785.2021.43.4.2020-766
[30] 李超友, 王安洋, 薛刚. 中心型肥胖与头颈癌的关系[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 120-125. doi:10.6040/j.issn.1673-3770.0.2021.137 LI Chaoyou, WANG Anyang, XUE Gang. The relationship between central obesity and head and neck cancer[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 120-125. doi:10.6040/j.issn.1673-3770.0.2021.137
[31] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi:10.3322/caac.21492
[32] Machiels JP, René Leemans C, Golusinski W, et al. Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2020, 31(11): 1462-1475. doi:10.1016/j.annonc.2020.07.011
[33] Johnson DE, Burtness B, Leemans CR, et al. Head and neck squamous cell carcinoma[J]. Nat Rev Dis Primers, 2020, 6(1): 92. doi:10.1038/s41572-020-00224-3
[34] Zhu WY, Ye ZP, Chen L, et al. A pyroptosis-related lncRNA signature predicts prognosis and immune microenvironment in head and neck squamous cell carcinoma[J]. Int Immunopharmacol,2021,101: 108268. doi:10.1016/j.intimp.2021.108268
[35] Cai J, Yi M, Tan YX, et al. Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-Ⅱ[J]. J Exp Clin Cancer Res, 2021, 40(1): 190. doi:10.1186/s13046-021-01995-7
[36] Cai J, Yi M, Tan YX, et al. Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-Ⅱ[J]. J Exp Clin Cancer Res, 2021,40(1):190. doi:10.1186/s13046-021-01995-7
[37] Deng HX, Wei ZY, Qiu SJ, et al. Pyroptosis patterns and immune infiltrates characterization in head and neck squamous cell carcinoma[J]. J Clin Lab Anal, 2022,36(4): e24292. doi:10.1002/jcla.24292
[38] Rioja-Blanco E, Arroyo-Solera I, álamo P, et al. CXCR4-targeted nanotoxins induce GSDME-dependent pyroptosis in head and neck squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2022, 41(1):49. doi:10.1186/s13046-022-02267-8
[39] Zhang MJ, Gao W, Liu S, et al. CD38 triggers inflammasome-mediated pyroptotic cell death in head and neck squamous cell carcinoma[J]. Am J Cancer Res, 2020, 10(9): 2895-2908
[40] Wang XY, Li HQ, Li W, et al. The role of Caspase-1/GSDMD-mediated pyroptosis in Taxol-induced cell death and a Taxol-resistant phenotype in nasopharyngeal carcinoma regulated by autophagy[J]. Cell Biol Toxicol, 2020, 36(5): 437-457. doi:10.1007/s10565-020-09514-8
[41] Chen ZD, Xu G, Wu D, et al. Lobaplatin induces pyroptosis through regulating cIAP1/2, ripoptosome and ROS in nasopharyngeal carcinoma[J]. Biochem Pharmacol, 2020, 177:114023. doi:10.1016/j.bcp.2020.114023
[42] Wycliffe ND, Grover RS, Kim PD, et al. Hypopharyngeal cancer[J]. Top Magn Reson Imaging, 2007, 18(4): 243-258. doi:10.1097/rmr.0b013e3181570c3f
[43] 王亚越, 孙娟. 下咽癌中差异表达的蛋白激酶及抑制剂的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 119-124. doi:10.6040/j.issn.1673-3770.0.2020.089 WANG Yayue, SUN Juan. Research progress on differentially-expressed protein kinases and inhibitors in hypopharyngeal carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(1): 119-124. doi:10.6040/j.issn.1673-3770.0.2020.089
[44] 苟浩铖, 范丽, 李丽, 等. 细胞焦亡相关因子在下咽鳞状细胞癌中的表达及意义[J]. 中国耳鼻咽喉颅底外科杂志, 2021, 27(2): 183-186. doi:10.11798/j.issn.1007-1520.202103109 GOU Haocheng, FAN Li, LI Li, et al. Expression and significance of pyroptosis related factors in hypopharyngeal squamous cell carcinoma[J]. Chinese Journal of Otorhinolaryngology-Skull Base Surgery, 2021, 27(2): 183-186. doi:10.11798/j.issn.1007-1520.202103109
[45] 侯锐, 陈琦, 王利, 等. 花青素及其生物活性的研究进展[J]. 现代生物医学进展, 2015, 15(28): 5590-5593. doi:10.13241/j.cnki.pmb.2015.28.051. doi:10.13241/j.cnki.pmb.2015.28.051 HOU Rui, CHEN Qi, WANG Li, et al. The research progress of anthocyanins and it's biological activities[J]. Progress in Modern Biomedicine, 2015, 15(28): 5590-5593. doi:10.13241/j.cnki.pmb.2015.28.051. doi:10.13241/j.cnki.pmb.2015.28.051
[46] Yue E, Tuguzbaeva G, Chen X, et al. Anthocyanin is involved in the activation of pyroptosis in oral squamous cell carcinoma[J]. Phytomedicine, 2019, 56: 286-294. doi:10.1016/j.phymed.2018.09.223
[47] Wang S, Zhang MJ, Wu ZZ, et al. GSDME is related to prognosis and response to chemotherapy in oral cancer[J]. J Dent Res, 2022, 101(7): 848-858. doi:10.1177/00220345211073072
[48] Tan YX, Chen QZ, Li XL, et al. Pyroptosis: a new paradigm of cell death for fighting against cancer[J]. J Exp Clin Cancer Res, 2021, 40(1). doi:10.1186/s13046-021-01959-x
[1] SUO Anqi, YANG Xinxin. Research progress on the relationship between mitochondrial autophagy and squamous cell carcinoma of the head and neck [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 111-117.
[2] AI Ziqin, LI Junzheng. Advances in immune vaccines for head and neck squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 143-150.
[3] LIU Zhen,SONG Xicheng. Mechanisms and research progress of pyroptosis in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 123-129.
[4] WEI Ya'nan,CHEN Xi. Progress in chemotherapy and targeted drug therapy for locally advanced head and neck squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(3): 118-124.
[5] ObjectiveThe aim of this study was to provide new perspectives and targets for the treatment of HNSCC by screening differentially expressed genes during cetuximab treatment of head and neck squamous cell carcinoma(HNSCC)using bioinformatics. MethodsThe chip dataset, GSE109756, was downloaded from the GEO database, and the online analysis tool, GEO2R, was used to screen differentially expressed genes in head and neck squamous cell carcinoma tissues treated with and without cetuximab. The DAVID 6.8 and STRING online software were used to analyze the function of the differentially expressed genes, their pathway enrichment, and their protein interactions. Cytoscape was used to visualize and analyze the protein interactions. The online analysis tool, X2K, was used to find the transcription factors, the kinases of differentially expressed genes, and their mutual regulatory relationship with the targeted genes. ResultsNinety-one differentially expressed genes, including 50 up-regulated and 41 down-regulated genes(P<0.05; | logFC | > 1), were found in head and neck squamous cell carcinoma tissues treated with and without cetuximab. The GO and KEGG pathway analyses suggested that these differentially expressed genes were mainly enriched with immunomodulation, extracellular matrix, and other processes. Through the construction of a protein-protein interaction network, we screened CD163, VSIG4, and 3 other core differentially expressed genes(P<0.05), which were up-regulated after cetuximab treatment. In addition, our analysis shows that transcription factors, including SUZ12, TP63, and ESR1, played a key role in cetuximab treatment(P<0.05)and MAPK14, CDK1, and MAPK1 were the most important kinases during the process(P<0.05). ConclusionCD163, VSIG4, and the aforementioned transcription factors and protein kinases may be involved in the biological processes that underlie cetuximab treatment of HNSCC. This study provides new perspectives to facilitate further understanding of the biological mechanism that underlies cetuximab treatment of HNSCC and the exploration of the effectiveness of HNSCC treatment.. Analysis of differentially expressed genes during cetuximab treatment of head and neck squamous cell carcinoma using bioinformaticsYU Kena1, SUN Kaiyue2, ZHANG Jie1, JIN Peng1 1. Department of Otorhinolaryngology & Head and Neck Surgery, The Second Hospital of Shandong University, Jinan 250033, Shandong, China; 2. Shandong Provincial Otorhinolaryngology Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250022, Shandong, ChinaAbstract: [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 117-124.
[6] WU Jing, LIU Yehai. Targeted therapy for head and neck squamous cell carcinoma [J]. J Otolaryngol Ophthalmol Shandong Univ, 2018, 32(5): 97-102.
[7] ZHAO Jincheng, SHI Ying, ZHANG Ying, JIA Zhanhong, MA Xin, ZHANG Jingqiu, WU Zaijun, WANG Yu. Expression and methylation patterns of CDH13 in human head and neck squamous carcinoma cells. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 60-63.
[8] LI Shu-na,WANG Xiao-yu,JIANG Xue-jun . BFGF prevents Cisplatin induced hair cell death and Caspase-9 activation in rat cochlea in vitro [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(5): 423-426 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!