JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY) ›› 2018, Vol. 32 ›› Issue (3): 96-104.doi: 10.6040/j.issn.1673-3770.0.2017.363

Previous Articles     Next Articles

Effect of maternal allergy and environmental exposure on immune maturation

LIANG Zhengyan, DENG Yuqin, TAO Zezhang   

  1. Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
  • Received:2017-08-25 Online:2018-05-20 Published:2018-05-20

Abstract: In recent years, the effects of maternal allergy and environmental exposure on immune maturation have attracted a lot of attention. The period before and after birth is key to immune maturation, exchange of maternal allergic immune components in cord blood, but the exact mechanism is unclear. Meanwhile, environmental exposure may have positive or negative effects on fetal immune function. This article summarizes the exposure factors and their effects on immune maturation.

Key words: Allergy, Environment exposure, Immune system

CLC Number: 

  • R446
[1] 程雷. 变应性鼻炎的诊断和治疗[J]. 山东大学耳鼻喉眼学报, 2013, 27(2):1-4.
[2] Warner JA, Jones AC, Miles EA, et al. Prenatal sensitization[J]. Pediatr Allergy Immunol, 1996, 7(9 Suppl):98-101.
[3] Ruiz RG, Richards D, Kemeny DM, et al. Neonatal IgE: a poor screen for atopic disease[J]. Clin Exp Allergy, 1991, 21(4):467-472.
[4] Cookson WO, Sharp PA, Faux JA, et al. Linkage between immunoglobulin E responses underlying asthma and rhinitis and chromosome 11q[J]. Lancet, 1989, 1(8650):1292-1295.
[5] Warner JA, Miles EA, Jones AC, et al. Is deficiency of interferon gamma production by allergen triggered cord blood cells a predictor of atopic eczema?[J]. Clin Exp Allergy, 1994, 24(5):423-430.
[6] Warner JO, Warner JA, Miles EA, et al. Reduced interferon-gamma secretion in neonates and subsequent atopy[J]. Lancet, 1994, 344(8935):1516-1516.
[7] Holt PG. Environmental factors and primary T-cell sensitisation to inhalant allergens in infancy: reappraisal of the role of infections and air pollution[J]. Pediatr Allergy Immunol, 1995, 6(1):1-10.
[8] 王慎梅. 不同配方奶和母亲过敏体质对早产儿外周血中Th1/Th2/Tr1细胞的影响[D]. 上海:上海交通大学, 2015.
[9] 谢龙山, 余保平, 谢桂珍,等. 尘螨过敏母亲对新生儿Th1/Th2平衡功能的影响[J]. 实用医学杂志, 2005, 21(13):1410-1411.
[10] Hrdý J, Novotná O, Kocourková I, et al. Gene expression of subunits of the IL-12 family cytokines in moDCs derived in vitro from the cord blood of children of healthy and allergic mothers[J]. Folia Biol(Praha), 2014, 60(2):74-82.
[11] Abelius MS, Jedenfalk M, Ernerudh J, et al. Pregnancy modulates the allergen-induced cytokine production differently in allergic and non-allergic women[J]. Pediatr Allergy Immunol, 2017 Sep 11. DOI: 10.1111/pai.12802.
[12] Schaub B, Campo M, He H, et al. Neonatal immune responses to TLR2 stimulation: influence of maternal atopy on Foxp3 and IL-10 expression[J]. Respir Res, 2006, 7(1):40.
[13] Schaub B, Liu J, Hoppler S, et al. Impairment of T-regulatory cells in cord blood of atopic mothers[J]. Allergy Clin Immunol, 2008, 121(6):1491-1499.
[14] Boyle RJ, Morley R, Mah LJ, et al. Reduced membrane bound CD14 expression in the cord blood of infants with a family history of allergic disease[J]. Clin Exp Allergy, 2009, 39(7):982-990.
[15] Boyle RJ, Morley R, Mah LJ, et al. Reduced membrane bound CD14 expression in the cord blood of infants with a family history of allergic disease[J]. Clin Exp Allergy, 2009, 39(7):982-990.
[16] Gold DR, Bloomberg GR, Cruikshank WW, et al. Parental characteristics, somatic fetal growth and season of birth influence innate and adaptive cord blood cytokine responses[J].J Allergy Clin Immunol, 2009, 124(5):1078-1087.
[17] Schaub B, Campo M, He H, et al. Neonatal immune responses to TLR2 stimulation: influence of maternal atopy on Foxp3 and IL-10 expression[J]. Respir Res, 2006,7(1):40-40.
[18] 梁音, 王丽慧, 杨炯. 屋尘螨过敏症母亲脐血中调节性T细胞数量上存在的缺陷[J]. 武汉大学学报(医学版), 2012, 33(2):283-288. LIANG Yin, WANG Lihui, YANG Jiong. Abnormal Regulatory T Cell Numbers in Cord Blood from Atopic Mothers Sensitized to House Dust Mite[J]. Med J Wuhan Univ, 2012, 33(2):283-288.
[19] Björkstén B, Aït-Khaled N, Innes AM, et al. Global analysis of breast feeding and risk of symptoms of asthma, rhinoconjunctivitis and eczema in 6-7 year old children: ISAAC Phase Three[J]. Allergol Immunopathol(Madr), 2011, 39(6):318-325.
[20] 邓莎莎, 陈铮, 彭咏梅. 不同过敏体质母亲母乳中PUFAs与免疫因子的差异及相互性研究[J]. 中国儿童保健杂志, 2016, 24(4):344-349. DENG Shasha, CHEN Zheng, PENG Yongmei. Relationship and differences of polyunsaturated fatty acids and cytokines in human breast milk between allergic and non-allergic mothers[J]. Chin J Child Health Care, 2016, 24(4):344-349.
[21] 张海邻, 倪丽艳,包其郁,等.CD14基因多态性与儿童特应性疾病的相关性[J].中华儿科杂志,2007,45(2):105-108. ZHANG Hailin, NI Liyan, BAO Qiyu, et al. Association of CD14 gene polymorphism with atopic diseases in Chinese Han ethnic group children[J]. Chin J Pediatr, 2007, 45(2):105-108.
[22] Jones CA, Warner JA, Warner JO. Fetal swallowing of IgE[J]. Lancet, 1998, 351(9119):1895-1895.
[23] Fuenfer MM, Herson VC, Raye JR, et al. The effect of betamethasone on neonatal neutrophil chemotaxis[J]. Pediatr Res, 1987, 22(2):150-153.
[24] Elenkov IJ. Glucocorticoids and the Th1/Th2 balance[J]. Ann N Y Acad Sci,2004, 1024(10):138-146.
[25] Veru F, Dancause K, Laplante DP, et al. Prenatal maternal stress predicts reductions in CD4+ lymphocytes, increases in innate-derived cytokines, and a Th2 shift in adolescents: project ice storm[J]. Physiol Behav, 2015, 144:137-145.
[26] Tseng WN, Chen CC, Yu HR, et al. Antenatal dexamethasone exposure in preterm infants is associated with allergic diseases and the mental development index in children[J]. Int J Environ Res Public Health, 2016, 13(12):1206-1206.
[27] Alikhani-Koopaei R, Fouladkou F, Frey FJ, et al. Epigenetic regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression[J]. J Clin Invest, 2004, 114(8):1146-1157.
[28] Christiaens I, Zaragoza DB, Guilbert L, et al. Inflammatory processes in preterm and term parturition[J]. J Reprod Immunol, 2008, 79(1):50-57.
[29] Ghaemmaghami P, Dainese SM, La Marca R, et al. The association between the acute psychobiological stress response in second trimester pregnant women, amniotic fluid glucocorticoids, and neonatal birth outcome[J]. Dev Psychobiol, 2014, 56(4):734-747.
[30] O'Donnell KJ, Bugge Jensen A, Freeman L, et al. Maternal prenatal anxiety and downregulation of placental 11β-HSD2[J]. Psychoneuroendocrinol, 2012, 37(6):818-826.
[31] Welberg LA, Thrivikraman KV, Plotsky PM. Chronic maternal stress inhibits the capacity to up-regulate placental 11betahydroxysteroid dehydrogenase type 2 activity[J]. J Endocrinol, 2005, 186(3):7-12.
[32] Sharma S, Kho AT, Chhabra D, et al. Glucocorticoid genes and the developmental origins of asthma susceptibility and treatment response[J]. Am J Respir Cell Mol Biol, 2015, 52(5):543-553.
[33] Rozance PJ, Seedorf GJ, Brown A, et al. Intrauterine growth restriction decreases pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep[J]. Am J Physiol Lung Cell Mol Physiol, 2011, 301(6):860-871.
[34] Lu Y, Ho R, Lim TK, et al. Neuropeptide Y may mediate psychological stress and enhance TH2 inflammatory response in asthma[J]. J Allergy Clin Immunol, 2015, 135(4):1061-1063.
[35] Kindlund K, Thomsen SF, Stensballe LG, et al. Birth weight and risk of asthma in 3-9-year-old twins: exploring the fetal origins hypothesis[J]. Thorax, 2010, 65(2):146-149.
[36] Been JV, Lugtenberg MJ, Smets E, et al. Preterm birth and childhood wheezing disorders: a systematic review and Meta-analysis[J]. Plos Med, 2014, 11(1):e1001596.
[37] Rosas-Salazar C, Ramratnam SK, Brehm JM, et al. Prematurity, atopy, and childhood asthma in Puerto Ricans[J]. J Allergy Clin Immunol, 2014, 133(2):357-362.
[38] Oberlander TF, Weinberg J, Papsdorf M, et al. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene(NR3C1)and infant cortisol stress responses[J]. Epigenetics, 2008, 3(2):97-106.
[39] Yehuda R, Daskalakis NP, Lehrner A, et al. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring[J]. Am J Psychiatry, 2014, 171(8):872-880.
[40] Radtke KM, Ruf M, Gunter HM, et al. Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor[J]. Transl Psychiatry, 2011, 1(7):e21.
[41] Oberlander TF, Weinberg J, Papsdorf M, et al. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene(NR3C1)and infant cortisol stress responses[J]. Epigenetics, 2008, 3(2):97-106.
[42] Yehuda R, Flory JD, Bierer LM, et al. Lower methylation of glucocorticoid receptor gene promoter 1 F, in peripheral blood of veterans with posttraumatic stress disorder[J]. Biol Psychiatry, 2015, 77(4):356-364.
[43] Lim R, Fedulov AV, Kobzik L. Maternal stress during pregnancy increases neonatal allergy susceptibility: role of glucocorticoids[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 307(2):141-148.
[44] Okuyama K, Dobashi K, Miyasaka T, et al. The involvement of glucocorticoids in psychological stress-induced exacerbations of experimental allergic asthma[J]. Int Arch Allergy Immunol, 2014, 163(4):297-306.
[45] Steffensen FH, Sørensen HT, Gillman MW, et al. Low birth weight and preterm delivery as risk factors for asthma and atopic dermatitis in young adult males[J]. Epidemiology, 2000, 11(2):185-188.
[46] Zijlmans MA, Korpela K, Riksen-Walraven JM, et al. Maternal prenatal stress is associated with the infant intestinal microbiota[J]. Psychoneuroendocrinology, 2015, 53:233-245.
[47] Sonnenschein-van der Voort AM, Jaddoe VW, Moll HA, et al. Influence of maternal and cord blood C-reactive protein on childhood respiratory symptoms and eczema[J]. Pediatr Allergy Immunol, 2013, 24(5):469-475.
[48] Cooper PJ, Chico ME, Amorim LD, et al. Effects of maternal geohelminth infections on allergy in early childhood[J]. J Allergy Clin Immunol, 2016, 137(3):899-906.
[49] Solano ME, Holmes MC, Mittelstadt PR, et al. Antenatal endogenous and exogenous glucocorticoids and their impact on immune ontogeny and long-term immunity[J]. Semin Immunopathol, 2016, 38(6):739-763.
[50] Mpairwe H, Ndibazza J, Webb EL, et al. Maternal hookworm modifies risk factors for childhood eczema: results from a birth cohort in Uganda[J]. Pediatr Allergy Immunol, 2014, 25(5):481-488.
[51] Pesce G, Marcon A, Marchetti P, et al. Febrile and gynecological infections during pregnancy are associated with a greater risk of childhood eczema[J]. Pediatr Allergy Immunol, 2014, 25(2):159-165.
[52] Hsieh VC, Liu CC, Hsiao YC, et al. Risk of allergic rhinitis, allergic conjunctivitis, and eczema in children born to mothers with gum inflammation during pregnancy[J]. Plos One, 2016, 11(5):e0156185.
[53] Murphy VE, Mattes J, Powell H, et al. Respiratory viral infections in pregnant women with asthma are associated with wheezing in the first 12 months of life[J]. Pediatr Allergy Immunol, 2014, 25(2):151-158.
[54] Pesce G, Marcon A, Marchetti P, et al. Febrile and gynecological infections during pregnancy are associated with a greater risk of childhood eczema[J]. Pediatr Allergy Immunol, 2014, 25(2):159-165.
[55] Stokholm J, Sevelsted A, Bønnelykke K, et al. Maternal propensity for infections and risk of childhood asthma: a registry-based cohort study[J]. Lancet Respir Med, 2014, 2(8):631-637.
[56] Lapin B, Piorkowski J, Ownby D, et al. Relationship between prenatal antibiotic use and asthma in at-risk children[J]. Ann Allergy Asthma Immunol, 2015, 114(3):203-207.
[57] Dharmage SC, Lodge CJ, Lowe AJ, et al. Antibiotics and risk of asthma: a debate that is set to continue[J]. Clin Exp Allergy, 2015, 45(1):6-8.
[58] Metsälä J, Lundqvist A, Virta LJ, et al. Prenatal and post-natal exposure to antibiotics and risk of asthma in childhood[J]. Clin Exp Allergy, 2015, 45(1):137-145.
[59] Black PN. Anti-inflammatory effects of macrolide antibiotics[J]. Eur Respir J,1997, 10(5):971-972.
[60] Sugihara E. Effect of macrolide antibiotics on neutrophil function in human peripheral blood[J]. Kansenshogaku Zasshi, 1997, 71(4):329-336.
[61] Ishida Y, Abe Y, Harabuchi Y. Effects of macrolides on antigen presentation and cytokine production by dendritic cells and T lymphocytes[J]. Int J Pediatr Otorhinolaryngol, 2007, 71(2):297-305.
[62] Kuo CH, Kuo HF, Huang CH, et al. Early life exposure to antibiotics and the risk of childhood allergic diseases: an update from the perspective of the hygiene hypothesis[J]. J Microbiol Immunol Infect, 2013, 46(5):320-329.
[63] Schaub B, Liu J, Hoppler S, et al. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells[J]. Allergy Clin Immunol, 2009, 123(4):774-782.
[64] Russell SL, Gold MJ, Willing BP, et al. Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma[J]. Gut Microbes, 2013, 4(2):158-164.
[65] Ege MJ, Bieli C, Frei R, et al. Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children[J]. J Allergy Clin Immunol, 2006,117(4): 817-823.
[66] von Mutius E. Maternal farm exposure/ingestion of unpasteurized cow's milk and allergic disease[J]. Curr Opin Gastroenterol, 2012, 28(6):570-576.
[67] Schaub B, Liu J, Höppler S, et al. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells[J]. J Allergy Clin Immunol, 2009, 123(4):774-782.
[68] Schuijs MJ, Willart MA, Vergote K, et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells[J]. Science, 2015, 349(6252):1106-1110.
[69] Luder E, Melnik TA, Dimaio M. Association of being overweight with greater asthma symptoms in inner city black and Hispanic children[J]. J Pediatr, 1998, 132(4):699-703.
[70] Ekstr(¨overo)m S, Magnusson J, Kull I, et al. Maternal body mass index in early pregnancy and offspring asthma, rhinitis and eczema up to 16 years of age[J]. Clin Exp Allergy, 2015, 45(1):283-291.
[71] van de Pavert SA, Ferreira M, Domingues RG, et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity[J]. Nature, 2014, 508(7494):123-127.
[72] Chambers ES, Hawrylowicz CM. The impact of vitamin D on regulatory T cells[J]. Curr Allergy Asthma Rep, 2011, 11(1):29-36.
[73] 魏真真, 陈威威, 王磊, 等. 孕期维生素D缺乏对子鼠Th1/Th2细胞免疫功能的影响[J]. 上海交通大学学报(医学版), 2016, 36(9):1278-1281. WEI Zhenzhen, CHEN Weiwei, WANG Lei, et al. Effects of maternal vitamin D deficiency on the immune function of Th1/Th2 in offspring rats[J]. J Shanghai Jiaotong Univ(Med Sci), 2016, 36(9):1278-1281.
[74] 陈凌燕, 周小建, 李霞, 等. 孕期哺乳期大鼠补充维生素D3对子代大鼠哮喘模型肺组织维生素D受体表达的影响[J]. 临床儿科杂志, 2012, 30(5):470-473. CHEN Lingyan, ZHOU Xiaojian, LI Xia, et al. Vitamin D3 supplementation in pregnant and lactating rats on vitamin D receptor expression in the lung of baby rats with asthma[J]. J Clin Pediatr, 2012, 30(5):470-473.
[75] Kim SH, Hong JH, Lee YC. Ursolic acid, a potential PPARγ agonist, suppresses ovalbumin-induced airway inflammation and Penh by down-regulating IL-5, IL-13, and IL-17 in a mouse model of allergic asthma[J]. Eur J Pharmacol, 2013, 701(1-3):131-143.
[76] Trerotola M, Relli V, Simeone P, et al. Epigenetic inheritance and the missing heritability[J]. Human Genomics, 2015, 9(1):17.
[77] Li YF, Langholz B, Salam MT, et al. Maternal and grandmaternal smoking patterns are associated with early childhood asthma[J]. Chest, 2005, 127(4):1232-41.
[78] Magnus MC, Haberg SE, Karlstad Ø, et al. Grandmother's smoking when pregnant with the mother and asthma in the grandchild: the norwegian mother and child cohort study[J]. Thorax, 2015,70(3):237-243.
[79] Miller LL, Henderson J, Northstone K, et al. Do grandmaternal smoking patterns influence the etiology of childhood asthma?[J] Chest, 2014, 145(6):1213-1218.
[80] Lodge CJ, Bråbäck L, Lowe AJ, et al. Grandmaternal smoking increases asthma risk in grandchildren: a nationwide Swedish cohort[J]. Clin Exp Allergy, 2017 Sep 19. doi: 10.1111/cea.13031.
[81] Noakes PS, Hale J, Thomas R, et al. Maternal smoking is associated with impaired neonatal toll-like-receptor-mediated immune responses[J]. Eur Respir J, 2006, 28(4):721-729.
[82] Rodríguez JM. The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation?[J]. Adv Nutr, 2014, 5(6):779-784.
[83] Bode L. Human milk oligosaccharides: every baby needs a sugar mama[J]. Glycobiology, 2012, 22(90):1147-1162.
[84] Bailey MT, Lubach GR, Coe CL. Prenatal stress alters bacterial colonization of the gut in infant monkeys[J]. J Pediatr Gastroenterol Nutr, 2004, 38(4):414-421.
[85] Faa G, Gerosa C, Fanni D, et al. Factors influencing the development of a personal tailored microbiota in the neonate, with particular emphasis on antibiotic therapy[J]. J Matern Fetal Neonatal Med, 2013, 26(S2):35-43.
[86] Westerbeek EA, van den Berg A, Lafeber HN, et al. The intestinal bacterial colonisation in preterm infants: a review of the literature[J]. Clin Nutr, 2006, 25(3):361-368.
[87] Bisgaard H, Nan L, Bonnelykke K, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age[J]. J Allergy Clin Immunol, 2011, 128(3):646-652.
[88] Dominguezbello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns[J]. Proc Natl Acad Sci U S A, 2010, 107(26):11971-11975.
[89] Azad MB, Konya T, Maughan H, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months[J]. CMAJ, 2013, 185(5):385-394.
[90] Jakobsson HE, Abrahamsson TR, Jenmalm MC, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section[J]. Gut, 2014, 63(4):559-566.
[91] Penders J, Gerhold K, Stobberingh EE, et al. Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood[J]. J Allergy Clin Immunol, 2013, 132(3):601-607.
[92] Zeissig S, Blumberg RS. Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease[J]. Nat Immunol, 2014, 15(4):307-310.
[93] Cho CE, Norman M. Cesarean section and development of the immune system in the offspring[J]. Am J Obstet Gynecol, 2013, 208(4):249-254.
[94] Molloy EJ, O'Neill AJ, Grantham JJ, et al. Labor promotes neonatal neutrophil survival and lipopolysaccharide responsiveness[J]. Pediatr Res, 2004, 56(1):99-103.
[95] Weinberger B, Vetrano AM, Syed K, et al. Influence of labor on neonatal neutrophil apoptosis, and inflammatory activity[J]. Pediatr Res, 2007, 61(1):572-577.
[96] Yektaei-Karin E, Moshfegh A, Lundahl J, et al. The stress of birth enhances in vitro, spontaneous and IL-8-induced neutrophil chemotaxis in the human newborn[J]. Pediatr Allergy Immunol, 2007, 18(8):643-651.
[97] 陈红波. 分娩发动前后孕妇蜕膜及外周血中NK、NKT细胞生物学特性的研究[D]. 合肥:安徽医科大学, 2010.
[98] Liao SL, Tsai MH, Yao TC, et al. Caesarean Section is associated with reduced perinatal cytokine response, increased risk of bacterial colonization in the airway, and infantile wheezing[J]. Sci Reports, 2017, 7(1):9053.
[99] 王慧, 吴长有. 白细胞介素10免疫调节功能的研究进展[J]. 国际免疫学杂志, 2010, 33(4):315-319. WANG Hui, WU Changyou. Advances in the study of the immunological functions of Interleukin-10[J]. Inter J Immunol, 2010, 33(4):315-319.
[100] Shen CM, Lin SC, Niu DM, et al. Labour increases the surface expression of two Toll-like receptors in the cord blood monocytes of healthy term newborns[J]. Acta Paediatrica, 2009, 98(6):959-962.
[101] Belderbos ME, Houben ML, van Bleek GM, et al. Breastfeeding modulates neonatal innate immune responses: a prospective birth cohort study[J]. Pediatr Allergy Immunol, 2012, 23(1):65-74.
[102] Malamitsi-Puchner A, Protonotariou E, Boutsikou T, et al. The influence of the mode of delivery on circulating cytokine concentrations in the perinatal period[J]. Early Hum Dev, 2005, 81(4):387-392.
[103] Garofalo R, Chheda S, Mei F, et al. Interleukin-10 in human milk[J]. Pediatr Res, 1995, 37(1):444-449.
[104] Faria AM, Weiner HL. Oral tolerance and TGF-beta-producing cells[J]. Inflamm Allergy Drug Targets, 2006, 5(3):179-190.
[105] JJ Yang, GC Pang. The immunological components in human milk and their effect on the immune development of infants[J]. Food Sci, 2006, 27(10):641-644.
[106] Ustundag B, Yilmaz E, Dogan Y, et al. Levels of cytokines(IL-1, IL-2, IL-6, IL-8, TNF-)and trace elements(Zn, Cu)in breast milk from mothers of preterm and term infants[J]. Mediators Inflamm,2005(6):331-336.
[107] Gollwitzer ES, Marsland BJ. Impact of early-life exposures on immune maturation and susceptibility to disease[J]. Trends Immunol, 2015, 36(11):684-696.
[108] Eiwegger T, Stahl B, Schmitt J, et al. Human milk derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro[J]. Pediatr Res, 2004, 56(4):536-540.
[109] Hawkes JS, Neumann MA, Gibson RA. The effect of breast feeding on lymphocyte subpopulations in healthy term infants at 6 months of age[J]. Pediatr Res, 1999, 45(1):648-651.
[110] Boccolini CS, Boccolini PM, de Carvalho ML, et al. Exclusive breastfeeding and diarrhea hospitalization patterns between 1999 and 2008 in Brazilian State Capitals[J]. Cien Saude Colet, 2012, 17(7):1857-1863.
[111] Boccolini CS, Carvalho ML, Oliveira MI, et al. Breastfeeding can prevent hospitalization for pneumonia, among children under 1 year old[J]. J Pediatr(Rio J), 2011, 87(5):399-404.
[112] Goenka A, Kollmann TR. Development of immunity in early life[J]. J Infect, 2015, 71(S1):S112-S120.
[113] Turfkruyer M, Verhasselt V. Breast milk and its impact on maturation of the neonatal immune system[J]. Curr Opin Infect Dis, 2015, 28(3):199-206.
[114] Gomez-Gallego C, Garcia-Mantrana I, Salminen S, et al. The human milk microbiome and factors influencing its composition and activity[J]. Semin Fetal Neonatal Med, 2016, 21(6):400-405.
[1] QIN Gang, LIANG Zhuoping. Status of immunotherapy in allergic fungal rhinosinusitis [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(3): 23-26.
[2] WANG Yan, SHI Xiaoli. The relationship between allergic reaction and children obstructive sleep apnea hypopnea syndrome [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(2): 14-18.
[3] LIU Zhe, TENG Bo, WEN Lianji. The impact of indoor air pollutants and diet to allergic diseases. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(3): 96-102.
[4] GAO Rong-li1, DING Jian2, ZANG Yan-wei3, YAN Shu1, LIU Ting-ting1, LIU Zan-gang4, GONG Xiang-gui5, ZHOU Xiao-bin6, LI Na1, ZHANG Nian-kai1. Epidemiological investigation of allergic rhinitis in the Qingdao area [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2012, 26(2): 55-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!