Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2021, Vol. 35 ›› Issue (6): 13-19.doi: 10.6040/j.issn.1673-3770.0.2021.329
Previous Articles Next Articles
Huang Tianze, Chen Di,LI Ying
CLC Number:
[1] Shen D, Wu G, Suk HI. Deep learning in medical image analysis[J]. Annu Rev Biomed Eng, 2017, 19: 221-248. doi:10.1146/annurev-bioeng-071516-044442. [2] Li ZX, He YF, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs[J]. Ophthalmology, 2018, 125(8): 1199-1206. doi:10.1016/j.ophtha.2018.01.023. [3] Lee J, Kim JS, Lee HJ, et al. Discriminating glaucomatous and compressive optic neuropathy on spectral-domain optical coherence tomography with deep learning classifier[J]. Br J Ophthalmol, 2020, 104(12): 1717-1723. doi:10.1136/bjophthalmol-2019-314330. [4] Liu Y, Yang J, Zhou Y, et al. Prediction of OCT images of short-term response to anti-VEGF treatment for neovascular age-related macular degeneration using generative adversarial network[J]. Br J Ophthalmol, 2020, 104(12): 1735-1740. doi:10.1136/bjophthalmol-2019-315338. [5] Liu XY, Jiang JW, Zhang K, et al. Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network[J]. PLoS One, 2017, 12(3): e0168606. doi:10.1371/journal.pone.0168606. [6] Vujosevic S, Aldington SJ, Silva P, et al. Screening for diabetic retinopathy: new perspectives and challenges[J]. Lancet Diabetes Endocrinol, 2020, 8(4): 337-347. doi:10.1016/S2213-8587(19)30411-5. [7] Salahouddin T, Petropoulos IN, Ferdousi M, et al. Artificial intelligence-based classification of diabetic peripheral neuropathy from corneal confocal microscopy images[J]. Diabetes Care, 2021, 44(7): e151-e153. doi:10.2337/dc20-2012. [8] Cui T, Wang Y, Ji SF, et al. Applying machine learning techniques in nomogram prediction and analysis for SMILE treatment[J]. Am J Ophthalmol, 2020, 210: 71-77. doi:10.1016/j.ajo.2019.10.015. [9] Siddiqui AA, Ladas JG, Lee JK. Artificial intelligence in cornea, refractive, and cataract surgery[J]. Curr Opin Ophthalmol, 2020, 31(4): 253-260. doi:10.1097/ICU.0000000000000673. [10] Lyra D, Ribeiro G, Torquetti L, et al. Computational models for optimization of the intrastromal corneal ring choice in patients with keratoconus using corneal tomography data[J]. J Refract Surg, 2018, 34(8): 547-550. doi:10.3928/1081597X-20180615-01. [11] Fariselli C, Vega-Estrada A, Arnalich-Montiel F, et al. Artificial neural network to guide intracorneal ring segments implantation for keratoconus treatment: a pilot study[J]. Eye Vis(Lond), 2020, 7: 20. doi:10.1186/s40662-020-00184-5. [12] Valdés-Mas MA, Martín-Guerrero JD, Rupérez MJ, et al. A new approach based on Machine Learning for predicting corneal curvature(K1)and astigmatism in patients with keratoconus after intracorneal ring implantation[J]. Comput Methods Programs Biomed, 2014, 116(1): 39-47. doi:10.1016/j.cmpb.2014.04.003. [13] Shen Y, Wang L, Jian WJ, et al. Big-data and artificial-intelligence-assisted vault prediction and EVO-ICL size selection for myopia correction[J]. Br J Ophthalmol, 2021: bjophthalmol-bjophtha2021-319618. doi:10.1136/bjophthalmol-2021-319618. [14] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi:10.1038/nature14539. [15] Maeda N, Klyce SD, Smolek MK. Neural network classification of corneal topography. Preliminary demonstration[J]. Invest Ophthalmol Vis Sci, 1995, 36(7): 1327-1335. [16] Ruiz Hidalgo I, Rozema JJ, Saad A, et al. Validation of an objective keratoconus detection system implemented in a scheimpflug tomographer and comparison with other methods[J]. Cornea, 2017, 36(6): 689-695. doi:10.1097/ICO.0000000000001194. [17] Arbelaez MC, Versaci F, Vestri G, et al. Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data[J]. Ophthalmology, 2012, 119(11): 2231-2238. doi:10.1016/j.ophtha.2012.06.005. [18] Kovács I, Miháltz K, Kránitz K, et al. Accuracy of machine learning classifiers using bilateral data from a Scheimpflug camera for identifying eyes with preclinical signs of keratoconus[J]. J Cataract Refract Surg, 2016, 42(2): 275-283. doi:10.1016/j.jcrs.2015.09.020. [19] Ambrósio R, Lopes BT, Faria-Correia F, et al. Integration of scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection[J]. J Refract Surg Thorofare N J, 2017, 33(7): 434-443. doi:10.3928/1081597X-20170426-02. [20] Herber R, Pillunat LE, Raiskup F. Development of a classification system based on corneal biomechanical properties using artificial intelligence predicting keratoconus severity[J]. Eye Vis(Lond), 2021, 8(1): 21. doi:10.1186/s40662-021-00244-4. [21] Issarti I, Consejo A, Jiménez-García M, et al. Computer aided diagnosis for suspect keratoconus detection[J]. Comput Biol Med, 2019, 109: 33-42. doi:10.1016/j.compbiomed.2019.04.024. [22] Kamiya K, Ayatsuka Y, Kato Y, et al. Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: a diagnostic accuracy study[J]. BMJ Open, 2019, 9(9): e031313. doi:10.1136/bmjopen-2019-031313. [23] Elsawy A, Eleiwa T, Chase C, et al. Multidisease deep learning neural network for the diagnosis of corneal diseases[J]. Am J Ophthalmol, 2021, 226: 252-261. doi:10.1016/j.ajo.2021.01.018. [24] Xie Y, Zhao LQ, Yang XN, et al. Screening candidates for refractive surgery with corneal tomographic-based deep learning[J]. JAMA Ophthalmol, 2020, 138(5): 519-526. doi:10.1001/jamaophthalmol.2020.0507. [25] Daud MM, Zaki WMDW, Hussain A, et al. Keratoconus detection using the fusion features of anterior and lateral segment photographed images[J]. IEEE Access, 2020, 8: 142282-142294. doi:10.1109/ACCESS.2020.3012583. [26] Mahmoud HAH, Mengash HA. Automated keratoconus detection by 3D corneal images reconstruction[J]. Sensors(Basel), 2021, 21(7): 2326. doi:10.3390/s21072326. [27] Scarpa F, Grisan E, Ruggeri A. Automatic recognition of corneal nerve structures in images from confocal microscopy[J]. Invest Ophthalmol Vis Sci, 2008, 49(11): 4801-4807. doi:10.1167/iovs.08-2061. [28] Dabbah MA, Graham J, Petropoulos IN, et al. Automatic analysis of diabetic peripheral neuropathy using multi-scale quantitative morphology of nerve fibres in corneal confocal microscopy imaging[J]. Med Image Anal, 2011, 15(5): 738-747. doi:10.1016/j.media.2011.05.016. [29] Chen X, Graham J, Dabbah MA, et al. An automatic tool for quantification of nerve fibers in corneal confocal microscopy images[J]. IEEE Trans Biomed Eng, 2017, 64(4): 786-794. doi:10.1109/TBME.2016.2573642. [30] Dehghani C, Pritchard N, Edwards K, et al. Fully automated, semiautomated, and manual morphometric analysis of corneal subbasal nerve plexus in individuals with and without diabetes[J]. Cornea, 2014, 33(7): 696-702. doi:10.1097/ICO.0000000000000152. [31] Salahouddin T, Petropoulos IN, Ferdousi M, et al. Artificial intelligence-based classification of diabetic peripheral neuropathy from corneal confocal microscopy images[J]. Diabetes Care, 2021, 44(7): e151-e153. doi:10.2337/dc20-2012. [32] Williams BM, Borroni D, Liu RJ, et al. An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study[J]. Diabetologia, 2020, 63(2): 419-430. doi:10.1007/s00125-019-05023-4. [33] 亚洲干眼协会中国分会, 海峡两岸医药卫生交流协会眼科学专业委员会眼表与泪液病学组, 中国医师协会眼科医师分会眼表与干眼学组. 中国干眼专家共识:检查和诊断(2020年)[J]. 中华眼科杂志, 2020, 56(10): 741-747. [34] Yedidya T, Carr P, Hartley R, et al. Enforcing monotonic temporal evolution in dry eye images[M] //Medical Image Computing and Computer-Assisted Intervention-MICCAI 2009. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 976-984. doi:10.1007/978-3-642-04271-3_118. [35] Ramos L, Barreira N, Mosquera A, et al. Analysis of parameters for the automatic computation of the tear film break-up time test based on CCLRU standards[J]. Comput Methods Programs Biomed, 2014, 113(3): 715-724. doi:10.1016/j.cmpb.2013.12.003. [36] Gumus K, Crockett CH, Rao K, et al. Noninvasive assessment of tear stability with the tear stability analysis system in tear dysfunction patients[J]. Invest Ophthalmol Vis Sci, 2011, 52(1): 456-461. doi:10.1167/iovs.10-5292. [37] Lan W, Lin L, Yang X, et al. Automatic noninvasive tear breakup time(TBUT)and conventional fluorescent TBUT[J]. Optom Vis Sci, 2014, 91(12): 1412-1418. doi:10.1097/opx.0000000000000418. [38] Carpente A, Ramos L, Barreira N, et al. On the automation of the tear film non-invasive break-up test[C] //2014 IEEE 27th International Symposium on Computer-Based Medical Systems. May 27-29, 2014, New York, NY, USA. IEEE, 2014: 185-188. doi:10.1109/CBMS.2014.54. [39] Guillon JP. Non-invasive Tearscope Plus routine for contact lens fitting[J]. Cont Lens Anterior Eye, 1998, 21(Suppl 1): S31-S40. doi:10.1016/s1367-0484(98)80035-0. [40] Remeseiro B, Bolon-Canedo V, Peteiro-Barral D, et al. A methodology for improving tear film lipid layer classification[J]. IEEE J Biomed Health Inform, 2014, 18(4): 1485-1493. doi:10.1109/JBHI.2013.2294732. [41] Peteiro-Barral D, Remeseiro B, Méndez R, et al. Evaluation of an automatic dry eye test using MCDM methods and rank correlation[J]. Med Biol Eng Comput, 2017, 55(4): 527-536. doi:10.1007/s11517-016-1534-5. [42] González-Domínguez J, Remeseiro B, Martín MJ. Parallel definition of tear film maps on distributed-memory clusters for the support of dry eye diagnosis[J]. Comput Methods Programs Biomed, 2017, 139: 51-60. doi:10.1016/j.cmpb.2016.10.027. [43] Edorh NA, El Maftouhi A, Djerada Z, et al. New model to better diagnose dry eye disease integrating OCT corneal epithelial mapping[J]. Br J Ophthalmol, 2021: bjophthalmol-bjophtha2021-318826. doi:10.1136/bjophthalmol-2021-318826. [44] Bron AJ, de Paiva CS, Chauhan SK, et al. TFOS DEWS II pathophysiology report[J]. Ocul Surf, 2017, 15(3): 438-510. doi:10.1016/j.jtos.2017.05.011. [45] Maruoka S, Tabuchi H, Nagasato D, et al. Deep neural network-based method for detecting obstructive meibomian gland dysfunction with in vivo laser confocal microscopy[J]. Cornea, 2020, 39(6): 720-725. doi:10.1097/ICO.0000000000002279. [46] 周奕文, 于薏, 周亚标, 等. 睑板腺缺失面积的图像深度处理分析研究[J]. 中华眼科杂志, 2020, 56(10): 774-779. doi:10.3760/cma.j.cn112142-20200415-00272. ZHOU Yiwen, YU Yi, ZHOU Yabiao, et al. An advanced imaging method for measuring and assessing meibomian glands based on deep learning[J]. Chin J Ophthalmol, 2020, 56(10): 774-779. doi:10.3760/cma.j.cn112142-20200415-00272. [47] Lv J, Zhang K, Chen Q, et al. Deep learning-based automated diagnosis of fungal keratitis with in vivo confocal microscopy images[J]. Ann Transl Med, 2020, 8(11): 706. doi:10.21037/atm.2020.03.134. [48] Gu H, Guo YW, Gu L, et al. Deep learning for identifying corneal diseases from ocular surface slit-lamp photographs[J]. Sci Rep, 2020, 10(1): 17851. doi:10.1038/s41598-020-75027-3. [49] Hung N, Shih AK, Lin C, et al. Using slit-lamp images for deep learning-based identification of bacterial and fungal keratitis: model development and validation with different convolutional neural networks[J]. Diagnostics(Basel), 2021, 11(7): 1246. doi:10.3390/diagnostics11071246. [50] Li Z, Jiang J, Chen K, et al. Preventing corneal blindness caused by keratitis using artificial intelligence[J]. Nat Commun, 2021, 12(1): 3738. doi:10.1038/s41467-021-24116-6. [51] Li ZW, Jiang JW, Chen K, et al. Development of a deep learning-based image quality control system to detect and filter out ineligible slit-lamp images: a multicenter study[J]. Comput Methods Programs Biomed, 2021, 203: 106048. doi:10.1016/j.cmpb.2021.106048. [52] Achiron A, Gur Z, Aviv U, et al. Predicting refractive surgery outcome: machine learning approach with big data[J]. J Refract Surg, 2017, 33(9): 592-597. doi:10.3928/1081597X-20170616-03. [53] Vigueras-Guillen JP, van Rooij J, Lemij HG, et al. Convolutional neural network-based regression for biomarker estimation in corneal endothelium microscopy images[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 2019: 876-881. doi:10.1109/EMBC.2019.8857201. [54] Heslinga FG, Alberti M, Pluim JPW, et al. Quantifying graft detachment after descemet's membrane endothelial keratoplasty with deep convolutional neural networks[J]. Transl Vis Sci Technol, 2020, 9(2): 48. doi:10.1167/tvst.9.2.48. [55] Tong Y, Lu W, Yu Y, et al. Application of machine learning in ophthalmic imaging modalities[J]. Eye Vis(Lond), 2020, 7: 22. doi:10.1186/s40662-020-00183-6. [56] Nuzzi R, Boscia G, Marolo P, et al. The impact of artificial intelligence and deep learning in eye diseases: a review[J]. Front Med(Lausanne), 2021, 8: 710329. doi:10.3389/fmed.2021.710329. [57] Zhang K, Liu XY, Liu F, et al. An interpretable and expandable deep learning diagnostic system for multiple ocular diseases: qualitative study[J]. J Med Internet Res, 2018, 20(11): e11144. doi:10.2196/11144. [58] 李东芳, 董燕玲, 谢森, 等. 基于深度学习的AS-OCT图像分析系统构建及其在角膜病变辅助诊断中的应用[J]. 中华眼科杂志, 2021, 57(6): 447-453. doi:10.3760/cma.j.cn112142-20200818-00540. LI Dongfang, DONG Yanling, XIE Sen, et al. Deep learning based lesion detection from anterior segment optical coherence tomography images and its application in the diagnosis of keratoconus[J]. Chin J Ophthalmol, 2021, 57(6): 447-453. doi:10.3760/cma.j.cn112142-20200818-00540. |
[1] | WANG Chuanyu, MU Guoying. Keratoconus combined with Kayser-Fleischer ring: a case report and literature review [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 58-62. |
[2] | XIA Yanyun, ZHONG Dingjuan, WANG Hua, LI Mengting, LI Qian, CHEN Jiao, HE Shuxi. Effect of high-energy accelerated corneal collagen cross-linking on the ocular surface of keratoconus [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 42-51. |
[3] | WANG Di, CHENG Jinzhang,YU Dan. Application of artificial intelligence based on machine learning in clinical diagnosis and treatment in otolaryngology [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 125-131. |
[4] | LI Jingjing, WU Xinxin, MAO Ning, ZHENG Guibin, MU Yakui, CHU Tongpeng, JIA Chuanliang, ZHENG Haitao, MI Jia, SONG Xicheng. CT-based radiomics nomogram for the preoperative prediction of central lymph node metastases of papillary thyroid carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 51-59. |
[5] | ZHAO Lianghui, CAI Tao, DU Xianli. Mutation analysis of ZEB1 in a pedigree with keratoconus [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 98-104. |
[6] | ZHANG Bin, LI Wei, HE Wei. Big bubble assisted deep lamellar keratoplasty surgery for keratoconus [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(1): 92-94. |
[7] | ZHU Zhiling, LI SongOverview,GUAN GuofangGuidance. Application and prospect of artificial intelligence in otolaryngology [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(2): 115-120. |
[8] | ZHANG Xiao, JIANG Liangzhu, XU Yanyun, MU Guoying. The result of riboflavin/UVA corneal collagen cross-linking with isotonic riboflavin solution and hypotonic riboflavin solution in the treatment of keratoconus. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(2): 87-90. |
[9] | ZHANG Chun-xiao, LI Zhi-wei, XU Wen-wen, LI Feng-jiao, TAO Xiang-chen, MU Guo-ying. Efficacy and safety evaluation of UVA/riboflavin crosslinking for late and thin cornea keratoconus [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(2): 86-88. |
[10] | HU Ming,LI Zhao-na,LI Yun-jie ,TAO Xiang-chen . Effect of rigid gas permeable contact lens on keratoconus [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(2): 171-173 . |
|