Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (3): 1-6.doi: 10.6040/j.issn.1673-3770.0.2022.129

• 论著 •    

Effects of a neuron specific AAV2 viral vector on the imaging efficiency of primary cultured spiral ganglion neurons in vitro

LIU Yaoqian1, ZHANG Zhen1,2,3, ZHANG Boya1,2,3, CHEN Zhengnong1,2,3   

  1. 1. Otolaryngology Research Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China;
    2. Department of Otorhinolaryngology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China;
    3. Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
  • Published:2023-05-24

Abstract: Objective To explore the effects of AAV2/Anc80L65-hSyn-eGFP virus containing a neuron-specific human synapsin promoter(hSyn)and enhanced green fluorescent protein(eGFP)on the imaging of spiral ganglion neuron(SGN)morphologies in vitro. Methods Dissociated SGNs were transfected with AAV2/Anc80L65-hSyn-eGFP in vitro. Using fluorescence microscopy, the transfection specificity and efficiency of the virus were evaluated by calculating the proportion of fluorescent neurons as observed under low magnification. Elaborate morphologies of single neuron were then observed under high magnification. The imaging application of AAV2/Anc80L65-hSyn-eGFP on living SGNs was further verified by patch clamp studies. Results The AAV2/Anc80L65-hSyn-eGFP virus had both high transfection specificity and efficiency for SGNs in vitro, and did not produce obvious cytotoxicity. Importantly, the virus could reveal the morphology of somas and neurites both rapidly and clearly without causing damage to their structures. Compared with neuron-specific Tuj1 fluorescent staining, AAV2/Anc80L65-hSyn-eGFP was able to mark delicate neurite structures such as filopodia. When utilized for the identification and localization of SGNs in patch clamp studies, AAV2/Anc80L65-hSyn-eGFP significantly promoted the efficiency and accuracy of the experiments. Conclusion AAV2/Anc80L65-hSyn-eGFP is a competent and ideal tool for highlighting the morphology of living SGNs in vitro.

Key words: AAV2/Anc80L65-hSyn-eGFP virus, Spiral ganglion neuron morphology, Primary culture, Imaging effect

CLC Number: 

  • R764.43+1
[1] Liberman MC, Kujawa SG. Cochlear synaptopathy in acquired sensorineural hearing loss: manifestations and mechanisms[J]. Hear Res, 2017, 349: 138-147. doi:10.1016/j.heares.2017.01.003
[2] Liberman MC. Noise-induced hearing loss: permanent versus temporary threshold shifts and the effects of hair cell versus neuronal degeneration[J]. Adv Exp Med Biol, 2016, 875: 1-7. doi:10.1007/978-1-4939-2981-8_1
[3] Wu P, Liberman L, Bennett K, et al. Primary neural degeneration in the human cochlea: evidence for hidden hearing loss in the aging ear[J]. Neuroscience, 2019, 21(407): 8-20. doi: 10.1016/j.neuroscience
[4] Zhang L, Chen S, Sun Y. Mechanism and prevention of spiral ganglion neuron degeneration in the cochlea[J]. Front Cell Neurosci, 2021, 15: 814891. doi:10.3389/fncel.2021.814891
[5] Liu W, Wang X, Wang M, et al. Protection of spiral ganglion neurons and prevention of auditory neuropathy[J]. Adv Exp Med Biol, 2019, 1130: 93-107. doi:10.1007/978-981-13-6123-4_6
[6] Yan W, Liu W, Qi J, et al. A three-dimensional culture system with Matrigel promotes purified spiral ganglion neuron survival and function in vitro[J]. Mol Neurobiol, 2018, 55(3): 2070-2084. doi: 10.1007/s12035-017-0471-0
[7] Wei H, Chen Z, Hu Y, et al. Topographically conductive butterfly wing substrates for directed spiral ganglion neuron growth[J]. Small, 2021, 17(38): e2102062. doi:10.1002/smll.202102062
[8] Meas SJ, Nishimura K, Scheibinger M, et al. In vitro methods to cultivate spiral ganglion cells, and purification of cellular subtypes for induced neuronal reprogramming[J]. Front Neurosci, 2018, 12: 822. doi:10.3389/fnins.2018.00822
[9] Hansen MR, Vijapurkar U, Koland JG, et al. Reciprocal signaling between spiral ganglion neurons and Schwann cells involves neuregulin and neurotrophins[J]. Hear Res, 2001, 161(1-2): 87-98. doi:10.1016/s0378-5955(01)00360-4
[10] Markowitz AL, Iyer MR, Kalluri R. Patch-clamp recordings and single fiber labeling from spiral ganglion somata in acutely prepared semi-intact cochleae from neonatal rats[J]. Bio Protoc, 2022, 12(1): e4281. doi:10.21769/bioprotoc.4281
[11] Naso M, Tomkowicz B, Perry W, et al. Adeno-associated virus(AAV)as a vector for gene therapy[J]. BioDrugs, 2017, 31(4): 317-314. doi: 10.1007/s40259-017-0234-5
[12] Nassi JJ, Cepko CL, Born RT, et al. Neuroanatomy goes viral![J]. Front Neuroanat, 2015, 9: 80. doi:10.3389/fnana.2015.00080
[13] Hu CJ, Lu YC, Tsai YH, et al. Efficient in utero gene transfer to the mammalian inner ears by the synthetic adeno-associated viral vector Anc80L65[J]. Mol Ther Methods Clin Dev, 2020, 18: 493-500. doi:10.1016/j.omtm.2020.06.019
[14] Landegger LD, Pan B, Askew C, et al. A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear[J]. Nat Biotechnol, 2017, 35(3): 280-284. doi:10.1038/nbt.3781
[15] Jin L, Lange W, Kempmann A, et al. High-efficiency transduction and specific expression of ChR2opt for optogenetic manipulation of primary cortical neurons mediated by recombinant adeno-associated viruses[J]. J Biotechnol, 2016, 233: 171-180. doi:10.1016/j.jbiotec.2016.07.001
[16] Sun S, Siebald C, Müller U. Subtype maturation of spiral ganglion neurons[J]. Curr Opin Otolaryngol Head Neck Surg, 2021, 29(5): 391-399. doi:10.1097/moo.0000000000000748
[17] Pavlinkova G. Molecular aspects of the development and function of auditory neurons[J]. Int J Mol Sci, 2020, 22(1): 131. doi:10.3390/ijms22010131
[18] Carricondo F, Romero-Gómez B. The cochlear spiral ganglion neurons: the auditory portion of the VIII nerve[J]. Anat Rec(Hoboken), 2019, 302(3): 463-471. doi:10.1002/ar.23815
[19] Davis RL, Crozier RA. Dynamic firing properties of type I spiral ganglion neurons[J]. Cell Tissue Res, 2015, 361(1): 115-127. doi: 10.1007/s00441-014-2071-x
[20] Furuta T, Tomioka R, Taki K, et al. In vivo transduction of central neurons using recombinant Sindbis virus: Golgi-like labeling of dendrites and axons with membrane-targeted fluorescent proteins[J]. J Histochem Cytochem, 2001, 49(12): 1497-1508. doi:10.1177/002215540104901203
[21] 章晶晶, 钟鹏, 孔彬, 等. AAV-DJ病毒对H9C2细胞感染效果的研究[J]. 医学研究杂志, 2021, 50(1): 22-27. doi:10.11969/j.issn.1673-548X.2021.01.006 ZHANG Jingjing, ZHONG Peng, KONG Bin, et al. Analysis of AAV-DJ virus infection to H9C2[J]. Journal of Medical Research, 2021, 50(1): 22-27. doi:10.11969/j.issn.1673-548X.2021.01.006
[22] Gu X, Chai R, Guo L, et al. Transduction of adeno-associated virus vectors targeting hair cells and supporting cells in the neonatal mouse cochlea[J]. Front Cell Neurosci, 2019, 13: 8. doi:10.3389/fncel.2019.00008
[23] Blanc F, Bemelmans AP, Affortit C, et al. A single cisterna Magna injection of AAV leads to binaural transduction in mice[J]. Front Cell Dev Biol, 2021, 9: 783504. doi:10.3389/fcell.2021.783504
[24] Furutani Y, Yoshihara Y. Proteomic analysis of dendritic filopodia-rich fraction isolated by telencephalin and vitronectin interaction[J]. Front Synaptic Neurosci, 2018, 10: 27. doi:10.3389/fnsyn.2018.00027
[25] Sheng C, Javed U, Gibbs M, et al. Experience-dependent structural plasticity targets dynamic filopodia in regulating dendrite maturation and synaptogenesis[J]. Nat Commun, 2018, 9(1): 3362. doi:10.1038/s41467-018-05871-5
[26] Okabe S. Regulation of actin dynamics in dendritic spines: Nanostructure, molecular mobility, and signaling mechanisms[J]. Mol Cell Neurosci, 2020, 109: 103564. doi:10.1016/j.mcn.2020.103564
[27] Duch C, Vonhoff F, Ryglewski S. Dendrite elongation and dendritic branching are affected separately by different forms of intrinsic motoneuron excitability[J]. J Neurophysiol, 2008, 100(5): 2525-2536. doi:10.1152/jn.90758.2008
[28] Crozier RA, Davis RL. Unmasking of spiral ganglion neuron firing dynamics by membrane potential and neurotrophin-3[J]. J Neurosci, 2014, 34(29): 9688-9702. doi:10.1523/jneurosci.4552-13.2014
[29] 查定军, 王智明, 薛涛, 等. 应用穿孔全细胞膜片钳记录技术研究培养大鼠耳蜗螺旋神经节神经元的基本电生理特性[J]. 神经解剖学杂志, 2008, 24(2): 157-160. doi:10.3969/j.issn.1000-7547.2008.02.009 ZHA Dingjun, WANG Zhiming, XUE Tao, et al. Electrophysiological properties cultured in the rat spiral ganglion neurons examined with perforated whole cell patch-clamp recording technique[J]. Chinese Journal of Neuroanatomy, 2008, 24(2): 157-160. doi:10.3969/j.issn.1000-7547.2008.02.009
[30] Kwiat M, Stein D, Patolsky F. Nanotechnology meets electrophysiology[J]. Curr Opin Biotechnol, 2013, 24(4): 654-663. doi:10.1016/j.copbio.2012.11.014
[31] Moore JJ, Ravassard PM, Ho D, et al. Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats[J]. Science, 2017, 355(6331): eaaj1497. doi:10.1126/science.aaj1497
[1] LI Tao, ZHU Hui-tao, ZHOU Jie-yu, LI Xue-zhong, CAI Xiao-lan. Primary culture and identification of fibroblasts cells from nasal polyps under normoxia and hypoxia [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2014, 28(2): 76-80.
[2] HU Yue, CHEN Ji chuan, WU Xiaoping, REN Hongmiao, JI Changyou. Transfection of primary culture cortical neurons with recombinant adenovirus  carrying the X-linked inhibitor of the apoptosis protein gene [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2011, 25(4): 16-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!