Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2022, Vol. 36 ›› Issue (2): 120-125.doi: 10.6040/j.issn.1673-3770.0.2021.137
Previous Articles Next Articles
LI Chaoyou, WANG Anyang,XUE Gang
CLC Number:
[1] Reyes-Gibby CC, Melkonian SC, Hanna EY, et al. Cohort study of oncologic emergencies in patients with head and neck cancer[J]. Head Neck, 2017, 39(6): 1195-1204. doi:10.1002/hed.24748. [2] 马小雨,边晓敏,于丹. 单羧酸转运蛋白家族与头颈部鳞状细胞癌的研究进展[J]. 山东大学耳鼻喉眼学报,2021, 35(2):125-130. doi:10.6040/j.issn.1673-3770.0.2020.196. MA Xiaoyu, BIAN Xiaomin, YU Dan. Advances in understanding the roles of monocarboxylate transporters in head and neck squamous cell carcinoma[J]. Journal of Otorhinolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 125-130. doi:10.6040/j.issn.1673-3770.0.2020.196. [3] SU YJ, DONG CP, SANG HK, et al. Role of obesity in otorhinolaryngologic diseases[J]. Curr Allergy Asthma Rep, 2019, 19(7): 34. doi: 10.1007/s11882-019-0865-3. [4] Chen YJ, Lee YCA, Li S, et al. Body mass index and the risk of head and neck cancer in the Chinese population[J]. Cancer Epidemiol, 2019, 60: 208-215. doi:10.1016/j.canep.2019.04.008. [5] Ward HA, Wark PA, Muller DC, et al. Measured adiposity in relation to head and neck cancer risk in the European prospective investigation into cancer and nutrition[J]. Cancer Epidemiol Biomarkers Prev, 2017, 26(6): 895-904. doi:10.1158/1055-9965.epi-16-0886. [6] Jiang H, Zhou L, He Q, et al. The effect of metabolic syndrome on head and neck cancer incidence risk: a population-based prospective cohort study[J]. Cancer Metab, 2021, 9(1): 25. doi:10.1186/s40170-021-00261-w. [7] Recalde M, Davila-Batista V, Díaz Y, et al. Body mass index and waist circumference in relation to the risk of 26 types of cancer: a prospective cohort study of 3.5 million adults in Spain[J]. BMC Med, 2021, 19(1): 10. doi:10.1186/s12916-020-01877-3. [8] Wang H, Wang P, Wu Y, et al. Correlation between obesity and clinicopathological characteristics in patients with papillary thyroid cancer: a study of 1579 cases: a retrospective study[J]. Peer J, 2020, 8: e9675. doi:10.7717/peerj.9675. [9] Feng JW, Yang XH, Wu BQ, et al. Influence of body mass index on the clinicopathologic features of papillary thyroid carcinoma[J]. Ann Otol Rhinol Laryngol, 2019, 128(7): 625-632. doi:10.1177/0003489419834314. [10] Argirion I, Arthur AE, Zarins KR, et al. Pretreatment dietary patterns, serum carotenoids and tocopherols influence tumor immune response in head and neck squamous cell carcinoma[J]. Nutr Cancer, 2020: 1-13. doi:10.1080/01635581.2020.1842895. [11] Zamani SA, McClain KM, Graubard BI, et al. Dietary polyunsaturated fat intake in relation to head and neck, esophageal, and gastric cancer incidence in the national institutes of health-AARP diet and health study[J]. Am J Epidemiol, 2020, 189(10): 1096-1113. doi:10.1093/aje/kwaa024. [12] Wang K, Yu XH, Tang YJ, et al. Obesity: an emerging driver of head and neck cancer[J]. Life Sci, 2019, 233: 116687. doi:10.1016/j.lfs.2019.116687. [13] Lee HC, Liang A, Lin YH, et al. Low dietary n-6/n-3 polyunsaturated fatty acid ratio prevents induced oral carcinoma in a hamster pouch model[J]. Prostaglandins Leukot Essent Fatty Acids, 2018, 136: 67-75. doi:10.1016/j.plefa.2017.03.003. [14] Nikolakopoulou Z, Nteliopoulos G, Michael-Titus AT, et al. Omega-3 polyunsaturated fatty acids selectively inhibit growth in neoplastic oral keratinocytes by differentially activating ERK1/2[J]. Carcinogenesis, 2013, 34(12): 2716-2725. doi:10.1093/carcin/bgt257. [15] Solís-Martínez O, Plasa-Carvalho V, Phillips-Sixtos G, et al. Effect of eicosapentaenoic acid on body composition and inflammation markers in patients with head and neck squamous cell cancer from a public hospital in Mexico[J]. Nutr Cancer, 2018, 70(4): 663-670. doi:10.1080/01635581.2018.1460678. [16] Shivappa N, Hébert JR, Zucchetto A, et al. Increased risk of nasopharyngeal carcinoma with increasing levels of diet-associated inflammation in an Italian case-control study[J]. Nutr Cancer, 2016, 68(7): 1123-1130. doi:10.1080/01635581.2016.1216137. [17] Xu WH, Hu XX, Anwaier A, et al. Fatty acid synthase correlates with prognosis-related abdominal adipose distribution and metabolic disorders of clear cell renal cell carcinoma[J]. Front Mol Biosci, 2021, 25(1): 610229. doi: 10.3389/fmolb.2020.610229. [18] Hirai H, Tada Y, Nakaguro M, et al. The clinicopathological significance of the adipophilin and fatty acid synthase expression in salivary duct carcinoma[J]. Virchows Arch, 2020, 477(2): 291-299. doi:10.1007/s00428-020-02777-w. [19] Su YW, Wu PS, Lin SH, et al. Prognostic value of the overexpression of fatty acid metabolism-related enzymes in squamous cell carcinoma of the head and neck[J]. Int J Mol Sci, 2020, 21(18): 6851. doi:10.3390/ijms21186851. [20] Wisniewski DJ, Ma T, Schneider A. Nicotine induces oral dysplastic keratinocyte migration via fatty acid synthase-dependent epidermal growth factor receptor activation[J]. Exp Cell Res, 2018, 370(2): 343-352. doi:10.1016/j.yexcr.2018.06.036. [21] de Aquino IG, Bastos DC, Cuadra-Zelaya FJM, et al. Anticancer properties of the fatty acid synthase inhibitor TVB-3166 on oral squamous cell carcinoma cell lines[J]. Arch Oral Biol, 2020, 113: 104707. doi:10.1016/j.archoralbio.2020.104707. [22] Walz JZ, Saha J, Arora A, et al. Fatty acid synthase as a potential therapeutic target in feline oral squamous cell carcinoma[J]. Vet Comp Oncol, 2018, 16(1): E99-E108. doi:10.1111/vco.12341. [23] Xiao X, Liu H, Li X. Orlistat treatment induces apoptosis and arrests cell cycle in HSC-3 oral cancer cells[J]. Microb Pathog, 2017, 112: 15-19. doi:10.1016/j.micpath.2017.09.001. [24] McKillop IH, Girardi CA, Thompson KJ. Role of fatty acid binding proteins(FABPs)in cancer development and progression[J]. Cell Signal, 2019, 62: 109336. doi:10.1016/j.cellsig.2019.06.001. [25] 张雨, 刘芳. FABP4在肿瘤发生发展的初步研究进展[J]. 中国生育健康杂志, 2020, 31(6): 577-579. doi:10.3969/j.issn.1671-878X.2020.06.020. [26] Fang LY, Wong TY, Chiang WF, et al. Fatty-acid-binding protein 5 promotes cell proliferation and invasion in oral squamous cell carcinoma[J]. J Oral Pathol Med, 2010, 39(4): 342-348. doi:10.1111/j.1600-0714.2009.00836.x. [27] Ohyama Y, Kawamoto Y, Chiba T, et al. Differential expression of fatty acid-binding proteins and pathological implications in the progression of tongue carcinoma[J]. Mol Clin Oncol, 2014, 2(1): 19-25. doi:10.3892/mco.2013.198. [28] Lee D, Wada K, Taniguchi Y, et al. Expression of fatty acid binding protein 4 is involved in the cell growth of oral squamous cell carcinoma[J]. Oncol Rep, 2014, 31(3): 1116-1120. doi:10.3892/or.2014.2975. [29] Chen J, Cao H, Lian M, et al. Five genes influenced by obesity may contribute to the development of thyroid cancer through the regulation of insulin levels[J]. Peer J, 2020, 8: e9302. doi:10.7717/peerj.9302. [30] 田晓婷. 未分化型甲状腺癌CRABP-Ⅱ和FABP5的表达失衡及其与维甲酸耐药性相关性研究[D]. 大连: 大连医科大学, 2018. doi: CNKI:CDMD:2.1018.183865. [31] Wu N, Sarna LK, Hwang SY, et al. Activation of 3-hydroxy-3-methylglutaryl coenzyme A(HMG-CoA)reductase during high fat diet feeding[J]. Biochim Biophys Acta, 2013, 1832(10): 1560-1568. doi:10.1016/j.bbadis.2013.04.024. [32] Kao LT, Hung SH, Kao PF, et al. Inverse association between statin use and head and neck cancer: Population-based case-control study in Han population[J]. Head Neck, 2019, 41(5): 1193-1198. doi:10.1002/hed.25501. [33] Gupta A, Stokes W, Eguchi M, et al. Statin use associated with improved overall and cancer specific survival in patients with head and neck cancer[J]. Oral Oncol, 2019, 90: 54-66. doi:10.1016/j.oraloncology.2019.01.019. [34] Dongoran RA, Wang KH, Lin TJ, et al. Anti-proliferative effect of statins is mediated by DNMT1 inhibition and p21 expression in OSCC cells[J]. Cancers, 2020, 12(8): 2084. doi:10.3390/cancers12082084. [35] Askari M, Darabi M, Zare Mahmudabadi R, et al. Tissue fatty acid composition and secretory phospholipase-A2 activity in oral squamous cell carcinoma[J]. Clin Transl Oncol, 2015, 17(5): 378-383. doi:10.1007/s12094-014-1242-2. [36] Chovatiya GL, Sunkara RR, Roy S, et al. Context-dependent effect of sPLA2-IIA induced proliferation on murine hair follicle stem cells and human epithelial cancer[J]. EBioMedicine, 2019, 48: 364-376. doi:10.1016/j.ebiom.2019.08.053. [37] De Rosa A, Monaco ML, Capasso M, et al. Adiponectin oligomers as potential indicators of adipose tissue improvement in obese subjects[J]. Eur J Endocrinol, 2013, 169(1): 37-43. doi:10.1530/EJE-12-1039. [38] Hano K, Hatano K, Saigo C, et al. An adiponectin paralog protein, CTRP6 decreased the proliferation and invasion activity of oral squamous cell carcinoma cells: possible interaction with laminin receptor pathway[J]. Mol Biol Rep, 2019,46(5): 4967-4973. doi:10.1007/s11033-019-04947-9. [39] Young MR, Levingston C, Johnson SD. Cytokine and adipokine levels in patients with premalignant oral lesions or in patients with oral cancer who did or did not receive 1α, 25-dihydroxyvitamin D3 treatment upon cancer diagnosis[J]. Cancers(Basel), 2015, 7(3): 1109-1124. doi:10.3390/cancers7030827. [40] da Rocha RG, Santos EMS, Santos EM, et al. Leptin impairs the therapeutic effect of ionizing radiation in oral squamous cell carcinoma cells[J]. J Oral Pathol Med, 2019, 48(1): 17-23. doi:10.1111/jop.12786. [41] Sobrinho Santos EM, Guimarães TA, Santos HO, et al. Leptin Acts on neoplastic behavior and expression levels of genes related to hypoxia, angiogenesis, and invasiveness in oral squamous cell carcinoma[J]. Tumour Biol, 2017, 39(5): 1010428317699130. doi:10.1177/1010428317699130. [42] Gallina S, Sireci F, Lorusso F, et al. The immunohistochemical peptidergic expression of leptin is associated with recurrence of malignancy in laryngeal squamous cell carcinoma[J]. Acta Otorhinolaryngol Ital, 2015, 35(1): 15-22. PMID:26015646 [43] Marcello MA, Calixto AR, de Almeida JF, et al. Polymorphism in LEP and LEPR may modify leptin levels and represent risk factors for thyroid cancer[J]. Int J Endocrinol, 2015: 173218. doi:10.1155/2015/173218. [44] Tzanavari T, Tasoulas J, Vakaki C, et al. The role of adipokines in the establishment and progression of head and neck neoplasms[J]. Curr Med Chem, 2019, 26(25): 4726-4748. doi:10.2174/0929867325666180713154505. [45] Er LK, Wu S, Hsu LA, et al. Pleiotropic associations of RARRES2 gene variants and circulating chemerin levels: potential roles of chemerin involved in the metabolic and inflammation-related diseases[J]. Mediators Inflamm, 2018: 4670521. doi:10.3390/ijms20051174. [46] Zhang KY, Liu CY, Hua L, et al. Clinical evaluation of salivary carbohydrate antigen 125 and leptin in controls and parotid tumours[J]. Oral Dis, 2016, 22(7): 630-638. doi:10.1111/odi.12505. [47] Wang N, Wang QJ, Feng YY, et al. Overexpression of chemerin was associated with tumor angiogenesis and poor clinical outcome in squamous cell carcinoma of the oral tongue[J]. Clin Oral Investig, 2014, 18(3): 997-1004. doi:10.1007/s00784-013-1046-8. [48] Lu Z, Liang J, He Q, et al. The serum biomarker chemerin promotes tumorigenesis and metastasis in oral squamous cell carcinoma[J]. Clin Sci(Lond), 2019, 133(5): 681-695. doi: 10.1042/CS20181023. [49] Iyengar NM, Ghossein RA, Morris LG, et al. White adipose tissue inflammation and cancer-specific survival in patients with squamous cell carcinoma of the oral tongue[J]. Cancer, 2016, 122(24): 3794-3802. doi:10.1002/cncr.30251. [50] 周悦, 闫爽. 肥胖、胰岛素抵抗及IGF-1水平与甲状腺乳头状癌关系的初步研究[J]. 哈尔滨医科大学学报, 2020,54(4): 383-386,391. ZHOU Yue, YAN Shuang. Preliminary study on the relationship between obesity, insulin resistance and IGF-1 level with thyroid papillary carcinoma[J]. J Harbin Med Univ, 2020, 54(4): 383-386,391. |
[1] | BIAN Xiaomin, HAN Guanghong, YU Dan. Recent advances regarding extracellular vesicles in head and neck cancers [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(1): 99-104. |
[2] | HUANG Fang, WEI Guifang, HUANG Sicheng, HUANG Xiangqin. Clinical analysis of 68 cases of multiple primary cancers of head and neck [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(6): 43-47. |
[3] | SONG Xicheng. Application value of enhanced recovery after surgery in head and neck cancer surgery [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(5): 1-4. |
[4] | ZHOU Juan, ZHENG Jiafa. Research progress of miRNA in head and neck cancers [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(5): 79-82. |
[5] | HAN Shuang, YU Dan, WEN Lianji. Application of narrow band imaging in head and neck malignant neoplasm [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(3): 86-89. |
[6] | JIA Chuan-liang1,2, ZHANG Li-jing2,3, SONG Xi-cheng2. MGMT gene associated with head and neck cancer [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2014, 28(3): 80-85. |
[7] | YANG Ge-fei, LI Shu-hua, WU Da-hai. Correlation of neck circumference with sleepingrespiratory parameters and dimensions of upper airway in obstructive sleep apnea hypopnea syndrome patients [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2012, 26(6): 4-7. |
[8] | QU Chen-hui1, SHOU Jian-wei1, GUO Yan1, WANG Li-jie2, YU Xiao-xu3. Clinical practice in peri-operative care of head-neck tumor in ultrasound-guided fine needle aspiration cytology [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2012, 26(2): 32-34. |
[9] | AN Zeng-xi, LI Xiao-yong, HOU Xiao-feng, JU Ye. 32 cases of facial and neck skin defect [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2012, 26(2): 69-70. |
|