Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (2): 158-167.doi: 10.6040/j.issn.1673-3770.0.2023.299
• Review • Previous Articles
LI Zhicheng1, YAN Ya1, DAI Liangping1, YING Junjie1, WANG Renzhong2
CLC Number:
[1] Whitcroft KL, Altundag A, Balungwe P, et al. Position paper on olfactory dysfunction: 2023[J]. Rhinology, 2023. doi:10.4193/Rhin22.483 [2] Whitcroft KL, Altundag A, Balungwe P, et al. Position paper on olfactory dysfunction: 2023[J]. Rhinology, 2023, 61(33): 1-108. doi: 10.4193/Rhin22.483 [3] 邢栋, 魏宏权. 使用3-甲基吲哚制作嗅觉障碍模型的研究进展[J]. 中国中西医结合耳鼻咽喉科杂志, 2020, 28(3): 226-229. doi:10.16542/j.cnki.issn.1007-4856.2020.03.016 XING Dong, WEI Hongquan. Research Progress in the use of 3-methylindole as a moder of oltactory dysfunction[J]. Chinese Journal of Otorhinolaryngology in Integrative Medicine, 2020, 28(3): 226-229. doi:10.16542/j.cnki.issn.1007-4856.2020.03.016 [4] Kim BY, Park J, Kim E, et al. Olfactory ensheathing cells mediate neuroplastic mechanisms after olfactory training in mouse model[J]. Am J Rhinol Allergy, 2020, 34(2): 217-229. doi:10.1177/1945892419885036 [5] Miller MA, O'Bryan MA. Ultrastructural changes and olfactory deficits during 3-methylindole-induced olfactory mucosal necrosis and repair in mice[J]. Ultrastruct Pathol, 2003, 27(1): 13-21. doi:10.1080/01913120309944 [6] Dibattista M, Al Koborssy D, Genovese F, et al. The functional relevance of olfactory marker protein in the vertebrate olfactory system: a never-ending story[J]. Cell Tissue Res, 2021, 383(1): 409-427. doi:10.1007/s00441-020-03349-9 [7] Kim JW, Hong SL, Lee CH, et al. Relationship between olfactory function and olfactory neuronal population in C57BL6 mice injected intraperitoneally with 3-methylindole[J]. Otolaryngol Head Neck Surg, 2010, 143(6): 837-842. doi:10.1016/j.otohns.2010.08.016 [8] Bergström U, Giovanetti A, Piras E, et al. Methimazole-induced damage in the olfactory mucosa: effects on ultrastructure and glutathione levels[J]. Toxicol Pathol, 2003, 31(4): 379-387. doi:10.1080/01926230390201101 [9] Ueha R, Ueha S, Sakamoto T, et al. Cigarette smoke delays regeneration of the olfactory epithelium in mice[J]. Neurotox Res, 2016, 30(2): 213-224. doi:10.1007/s12640-016-9617-5 [10] Baba M, Itaka K, Kondo K, et al. Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles[J]. J Control Release, 2015, 201: 41-48. doi:10.1016/j.jconrel.2015.01.017 [11] Goldstein BJ, Choi R, Goss GM. Multiple polycomb epigenetic regulatory proteins are active in normal and regenerating adult olfactory epithelium[J]. Laryngoscope Investig Otolaryngol, 2018, 3(5): 337-344. doi:10.1002/lio2.180 [12] Bergman U, Ostergren A, Gustafson AL, et al. Differential effects of olfactory toxicants on olfactory regeneration[J]. Arch Toxicol, 2002, 76(2): 104-112. doi:10.1007/s00204-002-0321-2 [13] Ahn S, Choi M, Kim H, et al. Transient anosmia induces depressive-like and anxiolytic-like behavior and reduces amygdalar corticotropin-releasing hormone in a ZnSO4-induced mouse model[J]. Chem Senses, 2018, 43(4): 213-221. doi:10.1093/chemse/bjy008 [14] Takahashi K, Tsuji M, Nakagawasai O, et al. Donepezil prevents olfactory dysfunction and α-synuclein aggregation in the olfactory bulb by enhancing autophagy in zinc sulfate-treated mice[J]. Behav Brain Res, 2023, 438: 114175. doi:10.1016/j.bbr.2022.114175 [15] McBride K, Slotnick B, Margolis FL. Does intranasal application of zinc sulfate produce anosmia in the mouse An olfactometric and anatomical study[J]. Chem Senses, 2003, 28(8): 659-670. doi:10.1093/chemse/bjg053 [16] Hsieh H, Horwath MC, Genter MB. Zinc gluconate toxicity in wild-type vs. MT1/2-deficient mice[J]. Neurotoxicology, 2017, 58: 130-136. doi:10.1016/j.neuro.2016.12.003 [17] Ueha R, Ueha S, Kondo K, et al. Damage to olfactory progenitor cells is involved in cigarette smoke-induced olfactory dysfunction in mice[J]. Am J Pathol, 2016, 186(3): 579-586. doi:10.1016/j.ajpath.2015.11.009 [18] Sahin E, Ortug G, Ortug A. Does cigarette smoke exposure lead to histopathological alterations in the olfactory epithelium An electron microscopic study on a rat model[J]. Ultrastruct Pathol, 2018, 42(5): 440-447. doi:10.1080/01913123.2018.1499685 [19] Ngwa HA, Kanthasamy A, Jin HJ, et al. Vanadium exposure induces olfactory dysfunction in an animal model of metal neurotoxicity[J]. Neurotoxicology, 2014, 43: 73-81. doi:10.1016/j.neuro.2013.12.004 [20] Hsia AY, Vincent JD, Lledo PM. Dopamine depresses synaptic inputs into the olfactory bulb[J]. J Neurophysiol, 1999, 82(2): 1082-1085. doi:10.1152/jn.1999.82.2.1082 [21] Colín-Barenque L, Bizarro-Nevares P, González Villalva A, et al. Neuroprotective effect of carnosine in the olfactory bulb after vanadium inhalation in a mouse model[J]. Int J Exp Pathol, 2018, 99(4): 180-188. doi:10.1111/iep.12285 [22] Foster ML, Rao DB, Francher T, et al. Olfactory toxicity in rats following manganese chloride nasal instillation: a pilot study[J]. Neurotoxicology, 2018, 64: 284-290. doi:10.1016/j.neuro.2017.09.004 [23] Liang CQ, Yang ZX, Zou QY, et al. Construction of an irreversible allergic rhinitis-induced olfactory loss mouse model[J]. Biochem Biophys Res Commun, 2019, 513(3): 635-641. doi:10.1016/j.bbrc.2019.03.110 [24] Steiner UC, Bischoff S, Valaperti A, et al. Endotypes of chronic rhinosinusitis with nasal polyps with and without NSAID â"intolerance[J]. Rhinology, 2020, 58(6): 544-549. doi:10.4193/Rhin19.423 [25] Sedger LM, McDermott MF. TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants-past, present and future[J]. Cytokine Growth Factor Rev, 2014, 25(4): 453-472. doi:10.1016/j.cytogfr.2014.07.016 [26] Sultan B, May LA, Lane AP. The role of TNF-α in inflammatory olfactory loss[J]. Laryngoscope, 2011, 121(11): 2481-2486. doi:10.1002/lary.22190 [27] Turner JH, May L, Reed RR, et al. Reversible loss of neuronal marker protein expression in a transgenic mouse model for sinusitis-associated olfactory dysfunction[J]. Am J Rhinol Allergy, 2010, 24(3): 192-196. doi:10.2500/ajra.2010.24.3460 [28] Jornot L, Cordey S, Caruso A, et al. T lymphocytes promote the antiviral and inflammatory responses of airway epithelial cells[J]. PLoS One, 2011, 6(10): e26293. doi:10.1371/journal.pone.0026293 [29] Pozharskaya T, Lane AP. Interferon gamma causes olfactory dysfunction without concomitant neuroepithelial damage[J]. Int Forum Allergy Rhinol, 2013, 3(11): 861-865. doi:10.1002/alr.21226 [30] Ye J, He JP, Liu ZJ. Olfactory mucosal microstructural changes in a rat model of acute rhinosinusitis with dysosmia[J]. Genet Mol Res, 2014, 13(2): 3859-3868. doi:10.4238/2014.May.16.11 [31] Kanaya K, Kondo K, Suzukawa K, et al. Innate immune responses and neuroepithelial degeneration and regeneration in the mouse olfactory mucosa induced by intranasal administration of Poly(I: C)[J]. Cell Tissue Res, 2014, 357(1): 279-299. doi:10.1007/s00441-014-1848-2 [32] Tian J, Pinto JM, Cui XL, et al. Sendai virus induces persistent olfactory dysfunction in a murine model of PVOD via effects on apoptosis, cell proliferation, and response to odorants[J]. PLoS One, 2016, 11(7): e0159033. doi:10.1371/journal.pone.0159033 [33] Ye Q, Zhou J, He Q, et al. SARS-CoV-2 infection in the mouse olfactory system[J]. Cell Discov, 2021, 7(1): 49. doi:10.1038/s41421-021-00290-1 [34] Xie C, Habif JC, Ukhanov K, et al. Reversal of ciliary mechanisms of disassembly rescues olfactory dysfunction in ciliopathies[J]. JCI Insight, 2022, 7(15): e158736. doi:10.1172/jci.insight.158736 [35] Zhang C, Wang X. Initiation of the age-related decline of odor identification in humans: A meta-analysis[J]. Ageing Research Reviews, 2017, 40: 45-50. doi:10.1016/j.arr.2017.08.004 [36] Seo Y, Ahn JS, Shin YY, et al. Mesenchymal stem cells target microglia via galectin-1 production to rescue aged mice from olfactory dysfunction[J]. Biomedecine Pharmacother, 2022, 153: 113347. doi:10.1016/j.biopha.2022.113347 [37] 刘一帆, 姚淋尹, 郭怡辰, 等. 外伤性嗅觉障碍患者的临床特点及随访研究[J]. 临床耳鼻咽喉头颈外科杂志, 2017, 31(22): 1726-1731. doi:10.13201/j.issn.1001-1781.2017.22.006 LIU Yifan, YAO Linyin, GUO Yichen, et al. Differences in clinical features of post-traumatic olfactory dysfunction and non-post-traumatic olfactory dysfunction: a follow-up study[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2017, 31(22): 1726-1731. doi:10.13201/j.issn.1001-1781.2017.22.006 [38] Siopi E, Calabria S, Plotkine M, et al. Minocycline restores olfactory bulb volume and olfactory behavior after traumatic brain injury in mice[J]. J Neurotrauma, 2012, 29(2): 354-361. doi:10.1089/neu.2011.2055 [39] 王嘉玲, 徐岩, 曹学兵. 帕金森病中嗅觉障碍机制的研究进展[J]. 临床内科杂志, 2022, 39(4): 283-285. doi:10.3969/j.issn.1001-9057.2022.04.020 WANG Jialing, XU Yan, CAO Xuebing. Research progress on the mechanism of olfactory dysfunction in Parkinson's disease[J]. Journal of Clinical Internal Medicine, 2022, 39(4): 283-285. doi:10.3969/j.issn.1001-9057.2022.04.020 [40] Ilkiw JL, Kmita LC, Targa ADS, et al. Dopaminergic lesion in the olfactory bulb restores olfaction and induces depressive-like behaviors in a 6-OHDA model of Parkinson's disease[J]. Mol Neurobiol, 2019, 56(2): 1082-1095. doi:10.1007/s12035-018-1134-5 [41] 祝娃娃, 王健达, 张险峰, 等. MPTP致帕金森病小鼠嗅觉障碍的机制研究[J]. 中风与神经疾病杂志, 2020, 37(10): 904-907. doi:10.19845/j.cnki.zfysjjbzz.2020.0481 ZHU Wawa, WANG Jianda, ZHANG Xianfeng, et al. The mechanism of olfactory impairment in MPTP-induced mouse model of Parkinson's disease[J]. Journal of Apoplexy and Nervous Diseases, 2020, 37(10): 904-907. doi:10.19845/j.cnki.zfysjjbzz.2020.0481 [42] Chen Y, Zhang QS, Shao QH, et al. NLRP3 inflammasome pathway is involved in olfactory bulb pathological alteration induced by MPTP[J]. Acta Pharmacol Sin, 2019, 40(8): 991-998. doi:10.1038/s41401-018-0209-1 [43] Sasajima H, Miyazono S, Noguchi T, et al. Intranasal administration of rotenone to mice induces dopaminergic neurite degeneration of dopaminergic neurons in the substantia nigra[J]. Biol Pharm Bull, 2017, 40(1): 108-112. doi:10.1248/bpb.b16-00654 [44] 章素芳, 李丽喜, 倪俊, 等. 模拟帕金森病的表达人α-synucleinA53T转基因小鼠的早期嗅觉功能观察[J]. 上海交通大学学报(医学版), 2012, 32(8): 1043-1049. doi:10.3969/j.issn.1674-8115.2012.08.018 ZHANG Sufang, LI Lixi, NI Jun, et al. Olfactory dysfunction of human α-synucleinA53T transgenic mice in simulation of early symptoms of Parkinson's disease[J]. Journal of Shanghai Jiao Tong University(Medical Science), 2012, 32(8): 1043-1049. doi:10.3969/j.issn.1674-8115.2012.08.018 [45] 路书彦, 黄汉昌, 姜招峰. 嗅觉障碍与阿尔茨海默病的关系[J]. 中国老年学杂志, 2015, 35(8): 2288-2290. doi:10.3969/j.issn.1005-9202.2015.08.133 LU Shuyan, HUANG Hanchang, JIANG Zhaofeng. Relationship between olfactory dysfunction and Alzheimer's disease[J]. Chinese Journal of Gerontology, 2015, 35(8): 2288-2290. doi:10.3969/j.issn.1005-9202.2015.08.133 [46] 林丽珍, 范杰诚, 郭培武, 等. 神经退行性疾病动物模型嗅觉障碍的研究进展[J]. 中国实验动物学报, 2021, 29(2): 268-274. doi:10.3969/j.issn.1005-4847.2021.02.019 LIN Lizhen, FAN Jiecheng, GUO Peiwu, et al. Research progress in animal models of olfactory dysfunction in neurodegenerative diseases[J]. Acta Laboratorium Animalis Scientia Sinica, 2021, 29(2): 268-274. doi:10.3969/j.issn.1005-4847.2021.02.019 [47] Wesson DW, Levy E, Nixon RA, et al. Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer's disease mouse model[J]. J Neurosci, 2010, 30(2): 505-514. doi:10.1523/JNEUROSCI.4622-09.2010 [48] Hu B, Geng C, Guo F, et al. GABAA receptor agonist muscimol rescues inhibitory microcircuit defects in the olfactory bulb and improves olfactory function in APP/PS1 transgenic mice[J]. Neurobiol Aging, 2021, 108: 47-57. doi:10.1016/j.neurobiolaging.2021.08.003 [49] Lachén-Montes M, González-Morales A, de Morentin XM, et al. An early dysregulation of FAK and MEK/ERK signaling pathways precedes the β-amyloid deposition in the olfactory bulb of APP/PS1 mouse model of Alzheimer's disease[J]. J Proteomics, 2016, 148: 149-158. doi:10.1016/j.jprot.2016.07.032 [50] Cassano T, Romano A, Macheda T, et al. Olfactory memory is impaired in a triple transgenic model of Alzheimer disease[J]. Behav Brain Res, 2011, 224(2): 408-412. doi:10.1016/j.bbr.2011.06.029 [51] Hu Y, Ding WT, Zhu XN, et al. Olfactory dysfunctions and decreased nitric oxide production in the brain of human P301L tau transgenic mice[J]. Neurochem Res, 2016, 41(4): 722-730. doi:10.1007/s11064-015-1741-8 [52] 陈晓程, 梁胜祥, 林冰冰, 等. P301L-Tau模型小鼠内嗅皮层-海马神经纤维变化与记忆功能障碍的相关性及其分子机制研究[J]. 康复学报, 2023, 33(2): 136-141. doi:10.3724/SP.J.1329.2023.02007 CHEN Xiaocheng, LIANG Shengxiang, LIN Bingbing, et al. Correlation analysis of the entorhinal cortex-hippocampus nerve fiber changes and memory dysfunction in P301L-tau mouse model and molecular mechanism[J]. Rehabilitation Medicine, 2023, 33(2): 136-141. doi:10.3724/SP.J.1329.2023.02007 [53] Alvarado-Martínez R, Salgado-Puga K, Pe a-Ortega F. Amyloid beta inhibits olfactory bulb activity and the ability to smell[J]. PLoS One, 2013, 8(9): e75745. doi:10.1371/journal.pone.0075745 [54] Coppola DM, Parrish Waters R. The olfactory bulbectomy disease model: a re-evaluation[J]. Physiol Behav, 2021, 240: 113548. doi:10.1016/j.physbeh.2021.113548 |
[1] | BI Zhaojing, LI Yuanbin. Current status of experimental models and applications of meibomian gland dysfunction [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(4): 159-165. |
[2] | LI Dan, CHEN Tengyu, HUANG Yanfen, ZHOU Min, ZHOU Yixing, RUAN Yan, YAN Yajie. Research in the field of olfactory disorders in China—An analysis based on Citespace [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 40-48. |
[3] | YAN Yu, ZENG Ao,,HE Yuxi. Model preparation of infectious keratitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 125-131. |
[4] | CHEN Hong, CAO Huiling, DOU Xin, GAO Xia. Small cell neuroendocrine carcinoma in the right nasal cavity: a report of one case and a literature review [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(1): 89-92. |
[5] | PAN Yongjie, SUN Guochen, ZANG Chuanshan. Granular cell tumor in the larynx: a report of four cases and a literature review. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(5): 104-106. |
[6] | HU Jindong, LIU Xinquan. Research progress of dry eye animal model. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 109-113. |
[7] | LI Lizhu, WU Qing, YI Xin, TIAN Li. Research progress on the animal model of allergic rhinitis in traditional Chinese medicine. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(3): 60-63. |
[8] | XIE Hui. Treatment of allergic rhinitis with traditional Chinese medicine. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(4): 22-25. |
[9] | WANG Zhiyuan, ZHANG Gehua. Establishment and application of model of chronic rhinosinusitis in mice [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(5): 76-78. |
[10] | WANG Xiaoyong, SONG Xicheng. Endoscopic surgery for surgical approache of benign lesion of maxillary sinus [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(3): 90-92. |
[11] | ZHANG Jian, WU Jian. Application of proteomics in nasal benign disease [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2014, 28(5): 95-98. |
[12] | HE Jing-chun1, RUAN Qing-wei2, HAN Miao-miao1, JIN Bin1, LI Ke-yong1, DONG Pin1. Establishment of sensorineural deafness model in C57 mice by cisplatin [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2014, 28(1): 1-5. |
[13] | WANG Yong-fu1, ZHANG Qing-quan2. Median palatine cyst [J]. J Otolaryngol Ophthalmol Shandong Univ, 2013, 27(1): 83-84. |
[14] | LIU Yu-tao, ZHU Xiao-ning, ZHONG Yan-xia. Primary small-vessel vasculitis firstly diagnosed in ENT: 2 cases report and literature review [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2012, 26(6): 34-35. |
[15] | QUAN Shi-ming1, PENG Ben-gang1, GAO Zhi-qiang2. Establishment and morphological assessment of the T-cell immune deficiency mouse model with facial nerve axotomy [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2010, 24(6): 5-9. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 3
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 26
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|