山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (5): 70-76.doi: 10.6040/j.issn.1673-3770.0.2022.076
• 综述 • 上一篇
张钰综述曲毅审校
ZHANG YuOverview,QU YiGuidance
摘要: 眼弓形体病是由刚地弓形虫感染引起的以单侧坏死性视网膜脉络膜炎为典型特征的疾病。当感染弓形虫后,速殖子穿过血-视网膜屏障能感染大部分有核细胞并直接对组织造成破坏,同时也会引起一系列过度的细胞免疫反应,进一步加重组织损害,引发视觉障碍。最终,速殖子能够在自身增殖与宿主免疫抵抗之间建立平衡,以组织包囊的形式长期寄生在宿主体内。临床治疗方面,除传统的乙胺嘧啶和磺胺嘧啶药物治疗外,为实现精准治疗,减少全身用药不良反应,新的联合治疗方案以及抗弓形虫药物也已开始研究并应用。结合目前临床面临的困境,着重对疾病的发病机制和临床治疗进行综述,期望对该病的诊疗提供理论基础。
中图分类号:
[1] Petersen E, Kijlstra A, Stanford M. Epidemiology of ocular toxoplasmosis[J]. Ocul Immunol Inflamm, 2012, 20(2): 68-75. doi:10.3109/09273948.2012.661115. [2] Patel NS, Vavvas DG. Ocular toxoplasmosis: a review of current literature[J]. Int Ophthalmol Clin, 2022, 62(2): 231-250. doi:10.1097/IIO.0000000000000419. [3] Fabiani S, Caroselli C, Menchini M, et al. Ocular toxoplasmosis, an overview focusing on clinical aspects[J]. Acta Trop, 2022, 225: 106180. doi:10.1016/j.actatropica.2021.106180. [4] 刘莉莉, 招志毅. 弓形虫眼病的诊断与治疗[J]. 医学信息, 2021, 34(9): 54-57. doi:10.3969/j.issn.1006-1959.2021.09.014. LIU Lili, ZHAO Zhiyi. Diagnosis and treatment of toxoplasmosis[J]. Journal of Medical Information, 2021, 34(9): 54-57. doi:10.3969/j.issn.1006-1959.2021.09.014. [5] Pichi F, Veronese C, Lembo A, et al. New appraisals of Kyrieleis plaques: a multimodal imaging study[J]. Br J Ophthalmol, 2017, 101(3): 316-321. doi:10.1136/bjophthalmol-2015-308246. [6] Yannuzzi NA, Gal-Or O, Motulsky E, et al. Multimodal imaging of punctate outer retinal toxoplasmosis[J]. Ophthalmic Surg Lasers Imaging Retina, 2019, 50(5): 281-287. doi:10.3928/23258160-20190503-04. [7] Oliver GF, Ferreira LB, Vieira BR, et al. Posterior segment findings by spectral-domain optical coherence tomography and clinical associations in active toxoplasmic retinochoroiditis[J]. Sci Rep, 2022, 12(1): 1156. doi:10.1038/s41598-022-05070-9. [8] Jones EJ, Korcsmaros T, Carding SR. Mechanisms and pathways of Toxoplasma gondii transepithelial migration[J]. Tissue Barriers, 2017, 5(1): e1273865. doi:10.1080/21688370.2016.1273865. [9] Runkle EA, Antonetti DA. The blood-retinal barrier: structure and functional significance[J]. Methods Mol Biol, 2011, 686: 133-148. doi:10.1007/978-1-60761-938-3_5. [10] Nogueira AR, Leve F, Morgado-Diaz J, et al. Effect of Toxoplasma gondii infection on the junctional complex of retinal pigment epithelial cells[J]. Parasitology, 2016, 143(5): 568-575. doi:10.1017/S0031182015001973. [11] Ramírez-Flores CJ, Cruz-Mirón R, Arroyo R, et al. Characterization of metalloproteases and serine proteases of Toxoplasma gondii tachyzoites and their effect on epithelial cells[J]. Parasitol Res, 2019, 118(1): 289-306. doi:10.1007/s00436-018-6163-5. [12] Holtkamp GM, Kijlstra A, Peek R, et al. Retinal pigment epithelium-immune system interactions: cytokine production and cytokine-induced changes[J]. Prog Retin Eye Res, 2001, 20(1): 29-48. doi:10.1016/s1350-9462(00)00017-3. [13] Lie S, Rochet E, Segerdell E, et al. Immunological molecular responses of human retinal pigment epithelial cells to infection with Toxoplasma gondii[J]. Front Immunol, 2019, 10: 708. doi:10.3389/fimmu.2019.00708. [14] Song HB, Jun HO, Kim JH, et al. Disruption of outer blood-retinal barrier by Toxoplasma gondii-infected monocytes is mediated by paracrinely activated FAK signaling[J]. PLoS One, 2017, 12(4): e0175159. doi:10.1371/journal.pone.0175159. [15] Ramírez-Flores CJ, Cruz-Mirón R, Lagunas-Cortés N, et al. Toxoplasma gondii excreted/secreted proteases disrupt intercellular junction proteins in epithelial cell monolayers to facilitate tachyzoites paracellular migration[J]. Cell Microbiol, 2021, 23(3): e13283. doi:10.1111/cmi.13283. [16] Barragan A, Brossier F, Sibley LD. Transepithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1(ICAM-1)with the parasite adhesin MIC2[J]. Cell Microbiol, 2005, 7(4): 561-568. doi:10.1111/j.1462-5822.2005.00486.x. [17] Furtado JM, Bharadwaj AS, Chipps TJ, et al. Toxoplasma gondii tachyzoites cross retinal endothelium assisted by intercellular adhesion molecule-1 in vitro[J]. Immunol Cell Biol, 2012, 90(9): 912-915. doi:10.1038/icb.2012.21. [18] Smith JR, David LL, Appukuttan B, et al. Angiogenic and immunologic proteins identified by deep proteomic profiling of human retinal and choroidal vascular endothelial cells: potential targets for new biologic drugs[J]. Am J Ophthalmol, 2018, 193: 197-229. doi:10.1016/j.ajo.2018.03.020. [19] Poncet AF, Blanchard N, Marion S. Toxoplasma and dendritic cells: an intimate relationship that deserves further scrutiny[J]. Trends Parasitol, 2019, 35(11): 870-886. doi:10.1016/j.pt.2019.08.001. [20] Bharadwaj AS, Schewitz-Bowers LP, Wei L, et al. Intercellular adhesion molecule 1 mediates migration of Th1 and Th17 cells across human retinal vascular endothelium[J]. Invest Ophthalmol Vis Sci, 2013, 54(10): 6917-6925. doi:10.1167/iovs.13-12058. [21] Kalogeropoulos D, Kalogeropoulos C, Sakkas H, et al. Pathophysiological aspects of ocular toxoplasmosis: host-parasite interactions[J]. Ocul Immunol Inflamm, 2021: 1-10. doi:10.1080/09273948.2021.1922706. [22] Belfort RN, Isenberg J, Fernandes BF, et al. Evaluating the presence of Toxoplasma gondii in peripheral blood of patients with diverse forms of uveitis[J]. Int Ophthalmol, 2017, 37(1): 19-23. doi:10.1007/s10792-016-0221-8. [23] Weidner JM, Kanatani S, Hernández-Castañeda MA, et al. Rapid cytoskeleton remodelling in dendritic cells following invasion by Toxoplasma gondii coincides with the onset of a hypermigratory phenotype[J]. Cell Microbiol, 2013, 15(10): 1735-1752. doi:10.1111/cmi.12145. [24] Smith JR, Chipps TJ, Ilias H, et al. Expression and regulation of activated leukocyte cell adhesion molecule in human retinal vascular endothelial cells[J]. Exp Eye Res, 2012, 104: 89-93. doi:10.1016/j.exer.2012.08.006. [25] Furtado JM, Bharadwaj AS, Ashander LM, et al. Migration of Toxoplasma gondii-infected dendritic cells across human retinal vascular endothelium[J]. Invest Ophthalmol Vis Sci, 2012, 53(11): 6856-6862. doi:10.1167/iovs.12-10384. [26] Song HB, Jung BK, Kim JH, et al. Investigation of tissue cysts in the Retina in a mouse model of ocular toxoplasmosis: distribution and interaction with glial cells[J]. Parasitol Res, 2018, 117(8): 2597-2605. doi:10.1007/s00436-018-5950-3. [27] Lahmar I, Pfaff AW, Marcellin L, et al. Müller cell activation and photoreceptor depletion in a mice model of congenital ocular toxoplasmosis[J]. Exp Parasitol, 2014, 144: 22-26. doi:10.1016/j.exppara.2014.06.006. [28] Reichenbach A, Bringmann A. Glia of the human Retina[J]. Glia, 2020, 68(4): 768-796. doi:10.1002/glia.23727. [29] Rochet E, Appukuttan B, Ma YF, et al. Expression of long non-coding RNAs by human retinal Müller glial cells infected with clonal and exotic virulent Toxoplasma gondii[J]. Noncoding RNA, 2019, 5(4): E48. doi:10.3390/ncrna5040048. [30] Knight BC, Kissane S, Falciani F, et al. Expression analysis of immune response genes of Müller cells infected with Toxoplasma gondii[J]. J Neuroimmunol, 2006, 179(1/2): 126-131. doi:10.1016/j.jneuroim.2006.06.002. [31] Smith JR, Ashander LM, Ma YF, et al. Model systems for studying mechanisms of ocular toxoplasmosis[J]. Methods Mol Biol, 2020, 2071: 297-321. doi:10.1007/978-1-4939-9857-9_17. [32] Gao FF, Quan JH, Choi IW, et al. FAF1 downregulation by Toxoplasma gondii enables host IRF3 mobilization and promotes parasite growth[J]. J Cell Mol Med, 2021, 25(19): 9460-9472. doi:10.1111/jcmm.16889. [33] Quan JH, Ismail HAHA, Cha GH, et al. VEGF production is regulated by the AKT/ERK1/2 signaling pathway and controls the proliferation of Toxoplasma gondii in ARPE-19 cells[J]. Front Cell Infect Microbiol, 2020, 10: 184. doi:10.3389/fcimb.2020.00184. [34] Tedesco RC, Smith RL, Corte-Real S, et al. Ocular toxoplasmosis: the role of retinal pigment epithelium migration in infection[J]. Parasitol Res, 2004, 92(6): 467-472. doi:10.1007/s00436-003-1031-2. [35] Nagineni CN, Detrick B, Hooks JJ. Toxoplasma gondii infection induces gene expression and secretion of interleukin 1(IL-1), IL-6, granulocyte-macrophage colony-stimulating factor, and intercellular adhesion molecule 1 by human retinal pigment epithelial cells[J]. Infect Immun, 2000, 68(1): 407-410. doi:10.1128/IAI.68.1.407-410.2000. [36] Spekker-Bosker K, Ufermann CM, Oldenburg M, et al. Interplay between IDO1 and iNOS in human retinal pigment epithelial cells[J]. Med Microbiol Immunol, 2019, 208(6): 811-824. doi:10.1007/s00430-019-00627-4. [37] Nagineni CN, Detrick B, Hooks JJ. Transforming growth factor-beta expression in human retinal pigment epithelial cells is enhanced by Toxoplasma gondii: a possible role in the immunopathogenesis of retinochoroiditis[J]. Clin Exp Immunol, 2002, 128(2): 372-378. doi:10.1046/j.1365-2249.2002.01815.x. [38] Lie S, Vieira BR, Arruda S, et al. Molecular basis of the retinal pigment epithelial changes that characterize the ocular lesion in toxoplasmosis[J]. Microorganisms, 2019, 7(10): E405. doi:10.3390/microorganisms7100405. [39] Ashander LM, Lie S, Ma YF, et al. Neutrophil activities in human ocular toxoplasmosis: an in vitro study with human cells[J]. Invest Ophthalmol Vis Sci, 2019, 60(14): 4652-4660. doi:10.1167/iovs.19-28306. [40] Raouf-Rahmati A, Ansar AR, Rezaee SA, et al. Local and systemic gene expression levels of IL-10, IL-17 and TGF-β in active ocular toxoplasmosis in humans[J]. Cytokine, 2021, 146: 155643. doi:10.1016/j.cyto.2021.155643. [41] LIS A, Wiley M, Vaughan J, et al. The activin receptor, activin-like kinase 4, mediates Toxoplasma gondii activation of hypoxia inducible factor-1[J]. Front Cell Infect Microbiol, 2019, 9: 36. doi:10.3389/fcimb.2019.00036. [42] Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states[J]. Br J Pharmacol, 2016, 173(4): 649-665. doi:10.1111/bph.13139. [43] Wang LT, Liu Q, Zhang YL, et al. Establishment of BV2 microglia polarization model and its effect on Toxoplasma gondii proliferation[J]. Res Vet Sci, 2019, 125: 382-389. doi:10.1016/j.rvsc.2019.08.002. [44] Hwang YS, Shin JH, Yang JP, et al. Characteristics of infection immunity regulated by Toxoplasma gondii to maintain chronic infection in the brain[J]. Front Immunol, 2018, 9: 158. doi:10.3389/fimmu.2018.00158. [45] Liu JF, Huang SG, Lu FL. Galectin-3 and galectin-9 may differently regulate the expressions of microglial M1/M2 markers and T helper 1/Th2 cytokines in the brains of genetically susceptible C57BL/6 and resistant BALB/c mice following peroral infection with Toxoplasma gondii[J]. Front Immunol, 2018, 9: 1648. doi:10.3389/fimmu.2018.01648. [46] Wang MH, Wong WT. Microglia-Müller cell interactions in the Retina[J]. Adv Exp Med Biol, 2014, 801: 333-338. doi:10.1007/978-1-4614-3209-8_42. [47] Conedera FM, Pousa AMQ, Mercader N, et al. Retinal microglia signaling affects Müller cell behavior in the zebrafish following laser injury induction[J]. Glia, 2019, 67(6): 1150-1166. doi:10.1002/glia.23601. [48] Fernandes Felix JP, Cavalcanti Lira RP, Grupenmacher AT, et al. Long-term results of trimethoprim-sulfamethoxazole versus placebo to reduce the risk of recurrent Toxoplasma gondii retinochoroiditis[J]. Am J Ophthalmol, 2020, 213: 195-202. doi:10.1016/j.ajo.2019.12.025. [49] Feliciano-Alfonso JE, Muñoz-Ortiz J, Marín-Noriega MA, et al. Safety and efficacy of different antibiotic regimens in patients with ocular toxoplasmosis: systematic review and meta-analysis[J]. Syst Rev, 2021, 10(1): 206. doi:10.1186/s13643-021-01758-7. [50] Casoy J, Nascimento H, Silva LMP, et al. Effectiveness of treatments for ocular toxoplasmosis[J]. Ocul Immunol Inflamm, 2020, 28(2): 249-255. doi:10.1080/09273948.2019.1569242. [51] Ozgonul C, Besirli CG. Recent developments in the diagnosis and treatment of ocular toxoplasmosis[J]. Ophthalmic Res, 2017, 57(1): 1-12. doi:10.1159/000449169. [52] Kalogeropoulos D, Sakkas H, Mohammed B, et al. Ocular toxoplasmosis: a review of the current diagnostic and therapeutic approaches[J]. Int Ophthalmol, 2022, 42(1): 295-321. doi:10.1007/s10792-021-01994-9. [53] Zhang YX, Lin X, Lu FL. Current treatment of ocular toxoplasmosis in immunocompetent patients: a network meta-analysis[J]. Acta Trop, 2018, 185: 52-62. doi:10.1016/j.actatropica.2018.04.026. [54] Dunphy L, Palmer B, Chen FB, et al. Fulminant diffuse cerebral toxoplasmosis as the first manifestation of HIV infection[J]. BMJ Case Rep, 2021, 14(1): e237120. doi:10.1136/bcr-2020-237120. [55] Khalili Pour E, Riazi-Esfahani H, Ebrahimiadib N, et al. Acquired immunodeficiency syndrome presented as atypical ocular toxoplasmosis[J]. Case Rep Ophthalmol Med, 2021, 2021: 5512408. doi:10.1155/2021/5512408. [56] Smith NC, Goulart C, Hayward JA, et al. Control of human toxoplasmosis[J]. Int J Parasitol, 2021, 51(2/3): 95-121. doi:10.1016/j.ijpara.2020.11.001. [57] Dunay IR, Gajurel K, Dhakal R, et al. Treatment of toxoplasmosis: historical perspective, animal models, and current clinical practice[J]. Clin Microbiol Rev, 2018, 31(4): e00057-e00017. doi:10.1128/CMR.00057-17. [58] Khan K, Khan W. Congenital toxoplasmosis: an overview of the neurological and ocular manifestations[J]. Parasitol Int, 2018, 67(6): 715-721. doi:10.1016/j.parint.2018.07.004. [59] Araujo-Silva CA, de Souza W, Martins-Duarte ES, et al. HDAC inhibitors Tubastatin A and SAHA affect parasite cell division and are potential anti-Toxoplasma gondii chemotherapeutics[J]. Int J Parasitol Drugs Drug Resist, 2021, 15: 25-35. doi:10.1016/j.ijpddr.2020.12.003. [60] Loeuillet C, Touquet B, Guichou JF, et al. A tiny change makes a big difference in the anti-parasitic activities of an HDAC inhibitor[J]. Int J Mol Sci, 2019, 20(12): E2973. doi:10.3390/ijms20122973. [61] Hopper AT, Brockman A, Wise A, et al. Discovery of selective Toxoplasma gondii dihydrofolate reductase inhibitors for the treatment of toxoplasmosis[J]. J Med Chem, 2019, 62(3): 1562-1576. doi:10.1021/acs.jmedchem.8b01754. [62] Welsch ME, Zhou J, Gao YQ, et al. Discovery of potent and selective leads against Toxoplasma gondii dihydrofolate reductase via structure-based design[J]. ACS Med Chem Lett, 2016, 7(12): 1124-1129. doi:10.1021/acsmedchemlett.6b00328. [63] Hajj RE, Tawk L, Itani S, et al. Toxoplasmosis: current and emerging parasite druggable targets[J]. Microorganisms, 2021, 9(12): 2531. doi:10.3390/microorganisms9122531. [64] Alday PH, Bruzual I, Nilsen A, et al. Genetic evidence for cytochrome b qi site inhibition by 4(1H)-quinolone-3-diarylethers and antimycin in Toxoplasma gondii[J]. Antimicrob Agents Chemother, 2017, 61(2): e01866-e01816. doi:10.1128/AAC.01866-16. [65] MacLean AE, Bridges HR, Silva MF, et al. Complexome profile of Toxoplasma gondii mitochondria identifies divergent subunits of respiratory chain complexes including new subunits of cytochrome bc1 complex[J]. PLoS Pathog, 2021, 17(3): e1009301. doi:10.1371/journal.ppat.1009301. [66] Hayward JA, van Dooren GG. Same same, but different: Uncovering unique features of the mitochondrial respiratory chain of api complexans[J]. Mol Biochem Parasitol, 2019, 232: 111204. doi:10.1016/j.molbiopara.2019.111204. [67] Nilsen A, Miley GP, Forquer IP, et al. Discovery, synthesis, and optimization of antimalarial 4(1H)-quinolone-3-diarylethers[J]. J Med Chem, 2014, 57(9): 3818-3834. doi:10.1021/jm500147k. [68] Long SJ, Wang QL, Sibley LD. Analysis of noncanonical calcium-dependent protein kinases in Toxoplasma gondii by targeted gene deletion using CRISPR/Cas9[J]. Infect Immun, 2016, 84(5): 1262-1273. doi:10.1128/IAI.01173-15. [69] Choi R, Hulverson MA, Huang WL, et al. Bumped Kinase Inhibitors as therapy for api complexan parasitic diseases: lessons learned[J]. Int J Parasitol, 2020, 50(5): 413-422. doi:10.1016/j.ijpara.2020.01.006. [70] Cardew EM, Verlinde CLMJ, Pohl E. The calcium-dependent protein kinase 1 from Toxoplasma gondii as target for structure-based drug design[J]. Parasitology, 2018, 145(2): 210-218. doi:10.1017/S0031182017001901. |
[1] | 冯晨,金霄雪,韩莹莹,邹娟娟,李延忠, 王岩. 原发局限性扁桃体淀粉样变1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 99-103. |
[2] | 向浏岚,叶远航综述蒋璐云,刘洋审校. Tim-3在变应性鼻炎中的作用及机制研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 118-122. |
[3] | Fahad Alkherayf, Hussein Kheshaifati, Abdulhadi Algahtani, Santanu Chakraborty, David Schramm. 上半规管裂综合征[J]. 山东大学耳鼻喉眼学报, 2020, 34(5): 89-96. |
[4] | 吕丹,李明霞,马兰枝,张馨元,肖浩,陈飞,刘均,李珍. 累及纵膈的头颈部丛状I型神经纤维瘤病两例[J]. 山东大学耳鼻喉眼学报, 2018, 32(1): 82-86. |
[5] | 周锋,王兴君,赵军,章少彬. 咽异物感伴有咽喉反流患者抗反流治疗的临床观察[J]. 山东大学耳鼻喉眼学报, 2016, 30(3): 29-31. |
[6] | 刘阳云1,陈志喜2,江文1,李正贤1,毛坤华1 . 不同的评估指标在鼻咽癌放疗后慢性鼻-鼻窦炎治疗方案选择和疗效评估中的价值[J]. 山东大学耳鼻喉眼学报, 2014, 28(1): 22-26. |
[7] | 刘阳云,李正贤,江文,毛坤华,陈琼,常恩格. VAS评分对鼻咽癌放疗后慢性鼻-鼻窦炎治疗方案选择的价值[J]. 山东大学耳鼻喉眼学报, 2013, 27(4): 66-69. |
[8] | 黄郁林,梁健刚. 木村病1例[J]. 山东大学耳鼻喉眼学报, 2012, 26(4): 89-90. |
[9] | 孙迎贞,范献良. 儿童阻塞性睡眠呼吸暂停低通气综合征患者红细胞补体受体1的测定[J]. 山东大学耳鼻喉眼学报, 2012, 26(3): 2-4. |
[10] | 钱小飞,陈建良. 鼻咽癌临床特征及82例误诊分析[J]. 山东大学耳鼻喉眼学报, 2010, 24(4): 48-51. |
[11] | 孟庆国,卢永田,范献良 . 杀伤细胞免疫球蛋白样受体基因多态性与鼻咽癌的关联性[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 196-199 . |
|