山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (5): 83-87.doi: 10.6040/j.issn.1673-3770.0.2021.147
• 综述 • 上一篇
赵颖,张珊综述许家骏,赵静如审校
ZHAO Ying, ZHANG ShanOverview,XU Jiajun, ZHAO JingruGuidance
摘要: 青光眼是以不可逆性、进行性视功能损害为特征的视神经退行性病变。研究认为,保护视网膜神经节细胞,使视神经免于继续受损已成为青光眼研究的重点。热休克蛋白72(HSP72)是热休克蛋白家族重要成员之一,是凋亡的抑制者,与神经保护有密切关系。研究HSP72在青光眼视网膜神经节细胞中的抗凋亡和细胞保护特性,对青光眼发病机制的理论研究和临床治疗具有重要的指导意义。就HSP72在青光眼视网膜神经节细胞中的保护作用进行综述。
中图分类号:
[1] 傅诗雅,张旭.青光眼动物模型中自噬与视网膜神经节细胞的关系[J].中华实验眼科杂志,2017, 35(2): 180-183. doi:10.3760/cma.j.issn.2095-0160.2017.02.018. FU Shiya, ZHANG Xu. Relationship between autophagy and retinal ganglion cells in animal models of glaucoma[J]. Chinese Journal of Experimental Ophthalmology,2017,35(2):180-183. doi:10.3760/cma.j.issn.2095-0160.2017.02.018. [2] Park HY, Kim JH, Park CK. Activation of autophagy induces retinal ganglion cell death in a chronic hypertensive Glaucoma model[J]. Cell Death Dis, 2012,3: 290. doi:10.1038/cddis.2012.26. [3] Chidlow G, Ebneter A, Wood JP, et al. The optic nerve head is the site of axonal transport disruption, axonal cytoskeleton damage and putative axonal regeneration failure in a rat model of glaucoma[J]. Acta Neuropathol, 2011,121(6): 737-751. doi:10.1007/s00401-011-0807-1. [4] Tezel G, Wax MB. Glial modulation of retinal ganglion cell death inGlaucoma[J]. J Glaucoma, 2003, 12(1): 63-68. doi:10.1097/00061198-200302000-00014. [5] 马建洲, 贺翔鸽. 免疫系统与青光眼[J]. 国际眼科杂志, 2007, 7(5): 1379-1383. doi:10.3969/j.issn.1672-5123.2007.05.053. MA Jianzhou, HE Xiangge. Immune factors and Glaucoma[J]. Int J Ophthalmol, 2007, 7(5):1379-1383. doi:10.3969/j.issn.1672-5123.2007.05.053. [6] Chen HH, Cho KS, Vu THK, et al. Author Correction: Commensal microflora-induced T cell responses mediate progressive neurodegeneration in Glaucoma[J]. Nat Commun, 2018, 9(1): 3914. doi:10.1038/s41467-018-06428-2. [7] Tezel G, Yang JJ, Wax MB. Heat shock proteins, immunity andGlaucoma[J]. Brain Res Bull, 2004, 62(6): 473-480. doi:10.1016/S0361-9230(03)00074-1. [8] Piri N, Kwong JM, Gu L, et al. Heat shock proteins in the retina: Focus on HSP70 and alpha crystallins in ganglion cell survival[J]. Prog Retin Eye Res, 2016, 52: 22-46. doi:10.1016/j.preteyeres.2016.03.001. [9] Madeira MH, Ortin-Martinez A, Nadal-Nícolas F, et al. Caffeine administration prevents retinal neuroinflammation and loss of retinal ganglion cells in an animal model of Glaucoma[J]. Sci Rep, 2016, 6: 27532. doi:10.1038/srep27532. [10] Fortune B, Reynaud J, Hardin C, et al. Experimental Glaucoma causes optic nerve head neural rim tissue compression: a potentially important mechanism of axon injury[J]. Invest Ophthalmol Vis Sci, 2016, 57(10): 4403-4411. doi:10.1167/iovs.16-20000. [11] Barbe MF, Tytell M, Gower DJ, et al. Hyperthermia protects against light damage in the rat Retina[J]. Science, 1988, 241(4874): 1817-1820.doi:10.1126/science.3175623. [12] Sato M, Schwartz WH, Selden SC, et al. Mechanical properties of brain tubulin and microtubules[J]. J Cell Biol, 1988, 106(4): 1205-1211.doi:10.1083/jcb.106.4.1205. [13] Saleh A, Srinivasula SM, Balkir L, et al. Negative regulation of the Apaf-1 apoptosome by Hsp70[J]. Nat Cell Biol, 2000, 2(8): 476-483.doi:10.1038/35019510. [14] Mosser DD, Caron AW, Bourget L, et al. The chaperone function of hsp70 is required for protection against stress-induced apoptosis[J]. Mol Cell Biol, 2000, 20(19): 7146-7159. doi:10.1128/MCB.20.19.7146-7159.2000. [15] Ishii Y, Kwong JM, Caprioli J. Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat Glaucoma model[J]. Invest Ophthalmol Vis Sci, 2003, 44(5): 1982-1992. [16] Nagashima M, Fujikawa C, Mawatari K, et al. HSP70, the earliest-induced gene in the zebrafish Retina during optic nerve regeneration: its role in cell survival[J]. Neurochem Int, 2011, 58(8): 888-895. doi:10.1016/j.neuint.2011.02.017. [17] Yao SQ, Peng M, Zhu XZ, et al. Heat shock protein72 protects hippocampal neurons from apoptosis induced by chronic psychological stress[J]. Int J Neurosci, 2007, 117(11): 1551-1564. doi:10.1080/00207450701239285. [18] Carmeli E, Beiker R, Maor M, et al. Increased iNOS, MMP-2, and HSP-72 in skeletal muscle following high-intensity exercise training[J]. J Basic Clin Physiol Pharmacol, 2010, 21(2): 127-146. doi:10.1515/jbcpp.2010.21.2.127. [19] Van Eden W, Jansen MA, Ludwig I, et al. The enigma of heat shock proteins in immune tolerance[J]. Front Immunol, 2017,8:1599. doi:10.3389/fimmu.2017.01599. [20] Jin CH, Cleveland JC, Ao LH, et al. Human myocardium releases heat shock protein 27(HSP27)after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor(TLR)-2 and TLR4[J]. Mol Med,2014, 20: 280-289. doi:10.2119/molmed.2014.00058. [21] Rosenberger K, Dembny P, Derkow K, et al. Intrathecal heat shock protein 60 mediates neurodegeneration and demyelination in the CNS through a TLR4-and MyD88-dependent pathway[J]. Mol Neurodegener, 2015,26(10):5. doi: 10.1186/s13024-015-0003-1. [22] Swaroop S, Sengupta N, Suryawanshi AR, et al. HSP60 plays a regulatory role in IL-1β-induced microglial inflammation via TLR4-p38 MAPK axis[J]. J Neuroinflammation, 2016, 13(1): 1-19. doi:10.1186/s12974-016-0486-x. [23] Kwong JMK, Gu L, Nassiri N, et al. AAV-mediated and pharmacological induction of Hsp70 expression stimulates survival of retinal ganglion cells following axonal injury[J]. Gene Ther, 2015, 22(2): 138-145. doi: 10.1038/gt.2014.105. [24] Li N, Li YH, Duan XC. Heat shock protein 72 confers protection in retinal ganglion cells and lateral geniculate nucleus neurons via blockade of the SAPK/JNK pathway in a chronic ocular-hypertensive rat model[J]. Neural Regen Res, 2014, 9(14): 1395-1401. doi:10.4103/1673-5374.137595. [25] Park KH, Cozier F, Ong OC, et al. Induction of heat shock protein 72 protects retinal ganglion cells in a rat Glaucoma model[J]. Invest Ophthalmol Vis Sci, 2001, 42(7): 1522-1530. [26] 张雪, 闫欢欢, 艾华, 等. 热休克蛋白反应对青光眼模型大鼠RGCs中HSP72生成的影响及其作用机制研究[J]. 临床和实验医学杂志, 2020, 19(5): 472-475. doi:10.3969/j.issn.1671-4695.2020.05.007. ZHANG Xue, YAN Huanhuan, AI Hua, et al. Effect of HSP response on HSP72 production in RGCs of Glaucoma model rats and its mechanism[J]. J Clin Exp Med, 2020, 19(5): 472-475. doi:10.3969/j.issn.1671-4695.2020.05.007. [27] Qing GP, Duan XC, Jiang YQ. Induction of heat shock protein 72 in RGCs of rat acute Glaucoma model after heat stress or zinc administration[J]. Eye Science: A View of Ophthalmology and Visual Science, 2004, 20(1): 30-33,51. [28] 孔凡女, 李清林. 热休克蛋白72(HSP72)对大鼠青光眼模型视网膜神经节细胞和视神经的保护作用[J]. 眼科新进展, 2019,39(8):737-740. doi:10.13389/j.cnki.rao.2019.0168. KONG Fannv, LI Qinglin. Protective effects of heat shock protein 72(HSP72)on retinal ganglion cells(RGCs)and optic nerve in rat model of Glaucoma[J]. Recent Adv Ophthalmol, 2019,39(8): 737-740. doi:10.13389/j.cnki.rao.2019.0168. [29] Caprioli J, Ishii Y, Kwong JM. Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat Glaucomamodel[J]. Trans Am Ophthalmol Soc, 2003, 101: 39-50. [30] 李月花. HSP72对大鼠青光眼模型视网膜神经节细胞和外侧膝状体神经元损伤的保护作用[D]. 长沙:中南大学, 2011. [31] Windisch BK, LeVatte TL, Archibald ML, et al. Induction of heat shock proteins 27 and 72 in retinal ganglion cells after acute pressure-induced ischaemia[J]. Clin Exp Ophthalmol, 2009, 37(3): 299-307. doi:10.1111/j.1442-9071.2009.02032.x. [32] Sohn S, Im JE, Kim TE, et al. Effect of heat shock protein 72 expression on etoposide-induced cell death of rat retinal ganglion cells[J]. Korean J Ophthalmol, 2013, 27(1): 48-51. doi:10.3341/kjo.2013.27.1.48. [33] Jiang SH, Kametani M, Chen DF. Adaptive immunity: new aspects ofpathogenesis underlying neurodegeneration in Glaucoma and opticneuropathy[J]. Front Immunol, 2020, 11: 65. doi:10.3389/fimmu.2020.00065. |
[1] | 唐翡然,孔香云综述申家泉审校. 相干光层析血管成像术测量视盘旁浅层血管密度在青光眼诊疗中的作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 77-82. |
[2] | 李萱, 黄映湘. 25例虹膜新生血管发生原因探讨[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 41-47. |
[3] | 秦书琪,王露萍,姜彬,王艳玲. 眼缺血综合征并发新生血管性青光眼一例并文献复习[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 53-55. |
[4] | 刘瑞宝,赵颖,郭明璐,段钰,吴艳霞,路雪婧. 自噬及其在青光眼中的研究进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 158-161. |
[5] | 刘琳,郑华,谌绍林,段宣初. 干细胞移植对大鼠青光眼模型视神经保护作用及安全性的Meta分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 138-144. |
[6] | 滕兴波,曹智,孙海霞,刘宪金,杨伟舟,朱艳,朱玉广. GRP94、EIF2α在原发型闭角性青光眼小梁中的作用研究[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 115-118. |
[7] | 谢洪彬,杨美娜,陈青山,刘旭阳,樊宁. IgG4相关性眼病伴继发性青光眼病例分析[J]. 山东大学耳鼻喉眼学报, 2018, 32(2): 99-102. |
[8] | 高雪,郝琳琳,刘少华,张晗. 两种人工晶体计算公式预测闭角型青光眼合并白内障患者超声乳化手术后屈光度准确性的比较[J]. 山东大学耳鼻喉眼学报, 2018, 32(1): 68-71. |
[9] | 赵栋栋, 王艺, 高建鲁. 原发性开角型青光眼易感基因研究进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(6): 92-96. |
[10] | 许晓. Ex-PRESS引流器植入术治疗青光眼的临床观察[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 90-93. |
[11] | 王越,柯敏,韩芳芳,王文欢,翁鸿. EX-PRESS引流器植入术与小梁切除术治疗开角型青光眼有效性和安全性的Meta分析[J]. 山东大学耳鼻喉眼学报, 2017, 31(2): 104-111. |
[12] | 童尧,郑岩,周雅丽,王艺晓,赵培泉,汪朝阳. 各型青光眼患者眼内TNF-α及IP-10水平及其相关性分析[J]. 山东大学耳鼻喉眼学报, 2017, 31(1): 103-106. |
[13] | 杨洪玲. 青光眼患者生活质量评估及相关因素的研究进展[J]. 山东大学耳鼻喉眼学报, 2016, 30(6): 94-97. |
[14] | 李冬梅. 长期使用前列腺素药物对青光眼患者睑板腺功能及角膜结构的影响[J]. 山东大学耳鼻喉眼学报, 2016, 30(3): 89-92. |
[15] | 柴雪荣, 张士玺, 陶钰, 申家泉. 玻璃体腔注射雷珠单抗联合小梁切除术及全视网膜光凝治疗新生血管性青光眼的效果评价[J]. 山东大学耳鼻喉眼学报, 2015, 29(3): 72-75. |
|