山东大学耳鼻喉眼学报 ›› 2020, Vol. 34 ›› Issue (1): 99-104.doi: 10.6040/j.issn.1673-3770.0.2019.370

• 综述 • 上一篇    下一篇

细胞外囊泡在头颈部肿瘤中的研究进展

边晓敏1, 韩光红2,于丹1   

  1. 1.吉林大学第二医院 耳鼻咽喉头颈外科, 吉林 长春 130041;
    2.吉林大学口腔医院 老年口腔科, 吉林 长春 130021
  • 出版日期:2020-01-20 发布日期:2020-03-06
  • 通讯作者: 于丹. E-mail: yudan19792003@163.com
  • 基金资助:
    吉林省科技厅国际合作项目(20180414054GH);吉林省自然科学基金(20190201212JC);吉林大学白求恩计划项目(470110000669);吉林省财政厅卫生人才专项基金(2019SCZT012);吉林省财政厅项目:(JCSZ2019378-22)

Recent advances regarding extracellular vesicles in head and neck cancers

BIAN Xiaomin1, HAN Guanghong2,YU Dan1   

  1. 1. Department of Otolaryngology and Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin, China;
    2. Department of Geriatric Stomatology, Stomatological Hospital of Jilin University, Changchun 130021, Jilin, China
  • Online:2020-01-20 Published:2020-03-06

摘要: 肿瘤的增殖和转移能力是由肿瘤微环境(TME)中细胞间的“相互对话”介导的。细胞外囊泡(EVs)是细胞主动分泌、可以介导细胞间通信的一种囊泡状小体,几乎来自所有类型的细胞,是癌细胞及其微环境之间的关键信号介质,在实现TME细胞间物质转运和信息传递方面发挥着重要作用。肿瘤细胞来源的EVs可以通过激活多种信号通路改变靶细胞生理状态,影响肿瘤微环境等方式参与肿瘤细胞的增殖与迁移。EVs在头颈部肿瘤(HNCs)中的分子机制和临床应用尚处于早期阶段,有待进一步研究。以头颈肿瘤的TME为研究重心,阐明EVs复杂的信号网络参与介导肿瘤增殖、侵袭转移、血管生成和肿瘤耐药的相关机制。

关键词: 细胞外囊泡, 外泌体, 头颈部肿瘤

Abstract: Proliferation and metastasis of tumors are mediated by “mutual dialogue” between cells in the tumor microenvironment(TME). Extracellular vesicles(EVs), vesicle-like bodies secreted by cells, are involved in intercellular communication and are secreted from almost all cell types. They are the key signal mediators between cancer cells and the TME. They play an important role in transporting molecules between cells in the TME. Tumor cell-derived EVs participate in the proliferation and migration of cancer cells through the activation of various signaling pathways in target cells in the TME. The molecular mechanisms and clinical applications of EVs in head and neck cancers are still largely unknown and need further study. In this review, we discuss the TME of head and neck cancers with emphasis on EV-mediated mechanisms in tumor proliferation, invasion, metastasis, angiogenesis, and drug resistance.

Key words: Extracellular vesicles, Exosomes, Head and neck cancers

中图分类号: 

  • R767.04
[1] 吴静, 刘业海. 头颈部鳞状细胞癌的靶向治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 97-102. doi:10.6040/j.issn.1673-3770.0. 2018.058. WU Jing, LIU Yehai. Targeted therapy for head and neck squamous cell carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(5): 97-102. doi:10.6040/j.issn.1673-3770.0. 2018.058.
[2] Jabalee J, Towle R, Garnis C. The role of extracellular vesicles in cancer: cargo, function, and therapeutic implications[J]. Cells, 2018, 7(8): 93. doi:10.3390/cells7080093.
[3] Gu XY, Erb U, Büchler MW, et al. Improved vaccine efficacy of tumor exosome compared to tumor lysate loaded dendritic cells in mice[J]. Int J Cancer, 2015, 136(4): E74-E84. doi:10.1002/ijc. 29100.
[4] Ludwig S, Sharma P, Theodoraki MN, et al. Molecular and functional profiles of exosomes from HPV(+)and HPV(-)head and neck cancer cell lines[J]. Front Oncol, 2018, 8: 445. doi:10.3389/fonc. 2018.00445.
[5] Theodoraki MN, Yerneni SS, Hoffmann TK, et al. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients[J]. Clin Cancer Res, 2018, 24(4): 896-905. doi:10.1158/1078-0432. CCR-17-2664.
[6] Theodoraki MN, Hoffmann TK, Jackson EK, et al. Exosomes in HNSCC plasma as surrogate markers of tumour progression and immune competence[J]. Clin Exp Immunol, 2018, 194(1): 67-78. doi:10.1111/cei. 13157.
[7] Maybruck BT, Pfannenstiel LW, Diaz-Montero M, et al. Tumor-derived exosomes induce CD8+ T cell suppressors[J]. J Immunother Cancer, 2017, 5(1): 65. doi:10.1186/s40425-017-0269-7.
[8] Xie CQ, Ji N, Tang ZG, et al. The role of extracellular vesicles from different origin in the microenvironment of head and neck cancers[J]. Mol Cancer, 2019, 18(1): 83. doi:10.1186/s12943-019-0985-3.
[9] Huang Q, Yang JC, Zheng J, et al. Characterization of selective exosomal microRNA expression profile derived from laryngeal squamous cell carcinoma detected by next generation sequencing[J]. Oncol Rep, 2018, 40(5): 2584-2594. doi:10.3892/or. 2018.6672.
[10] Wang XN, Qin X, Yan M, et al. Loss of exosomal miR-3188 in cancer-associated fibroblasts contributes to HNC progression[J]. J Exp Clin Cancer Res, 2019, 38(1): 151. doi:10.1186/s13046-019-1144-9.
[11] Cheng SY, Li Z, He JJ, et al. Epstein-Barr virus noncoding RNAs from the extracellular vesicles of nasopharyngeal carcinoma(NPC)cells promote angiogenesis via TLR3/RIG-I-mediated VCAM-1 expression[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(6): 1201-1213. doi:10.1016/j.bbadis. 2019.01.015.
[12] Bao LL, You B, Shi S, et al. Metastasis-associated miR-23a from nasopharyngeal carcinoma-derived exosomes mediates angiogenesis by repressing a novel target gene TSGA10[J]. Oncogene, 2018, 37(21): 2873-2889. doi:10.1038/s41388-018-0183-6.
[13] Shan Y, You B, Shi S, et al. Hypoxia-induced matrix metalloproteinase-13 expression in exosomes from nasopharyngeal carcinoma enhances metastases[J]. Cell Death Dis, 2018, 9(3): 382. doi:10.1038/s41419-018-0425-0.
[14] 王爽, 孔祥玉, 杜利清. 外泌体与肿瘤化疗耐药的研究进展[J]. 肿瘤, 2017, 37(2): 184-187. doi:10.3781/j.issn.1000-7431. 2017.55.719. WANG Shuang, KONG Xiangyu, DU Liqing. Progress in research on exosomes in tumor chemotherapy resistance[J]. Tumor, 2017, 37(2): 184-187. doi:10.3781/j.issn.1000-7431. 2017.55.719.
[15] 张如月, 周玉冰, 杨哲, 等. 外泌体介导的肿瘤化疗耐药研究进展[J]. 药学学报, 2019, 54(4): 594-600. doi:10.16438/j.0513-4870. 2018-1025. ZHANG Ruyue, ZHOU Yubing, YANG Zhe, et al. Advances in understanding exosomes-mediated tumor chemoresistance[J]. Acta Pharmaceutica Sinica, 2019, 54(4): 594-600. doi:10.16438/j.0513-4870. 2018-1025.
[16] Steinbichler TB, Dudás J, Skvortsov S, et al. Therapy resistance mediated by exosomes[J]. Mol Cancer, 2019, 18(1): 58. doi:10.1186/s12943-019-0970-x.
[17] 陈曦, 乔明哲. 免疫检查点抑制剂在复发或转移性头颈鳞癌的治疗进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 42-48.doi:10.6040/j.issn.1673-3770. 1. 2019.001. CHEN Xi, QIAO Mingzhe. Progress of immune checkpoint inhibitors in the treatment of recurrent or metastatic head and neck squamous cell carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 42-48. doi:10.6040/j.issn.1673-3770.1. 2019.001.
[18] Qin X, Guo HY, Wang XN, et al. Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5[J]. Genome Biol, 2019, 20(1): 12. doi:10.1186/s13059-018-1604-0.
[19] Liu T, Chen G, Sun DW, et al. Exosomes containing miR-21 transfer the characteristic of cisplatin resistance by targeting PTEN and PDCD4 in oral squamous cell carcinoma[J]. Acta Biochim Biophys Sin(Shanghai), 2017, 49(9): 808-816. doi:10.1093/abbs/gmx078.
[20] 严羽, 朱江. 早期喉癌及喉癌前病变诊断的研究进展[J]. 山东大学耳鼻喉眼学报, 2015, 29(4): 80-85. doi:10.6040/j. issn.1673-770.0. 2015.007. YAN Yu, ZHU Jiang. Advances in the diagnosis of early laryngeal carcinoma and precancerous laryngeal lesions[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2015, 29(4): 80-85. doi:10.6040/j. issn.1673-770.0. 2015.007.
[21] Jiang N, Pan JC, Fang S, et al. Liquid biopsy: Circulating exosomal long noncoding RNAs in cancer[J]. Clin Chim Acta, 2019, 495: 331-337. doi:10.1016/j.cca. 2019.04.082.
[22] Wang JT, Zhou YD, Lu JG, et al. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma[J]. Med Oncol, 2014, 31(9): 148. doi:10.1007/s12032-014-0148-8.
[23] Ding H, Cai YJ, Gao LZ, et al. Exosome-like nanozyme vesicles for H2O2-responsive catalytic photoacoustic imaging of xenograft nasopharyngeal carcinoma[J]. Nano Lett, 2019, 19(1): 203-209. doi:10.1021/acs.nanolett. 8b03709.
[24] Nair S, Tang KD, Kenny L, et al. Salivary exosomes as potential biomarkers in cancer[J]. Oral Oncol, 2018, 84: 31-40. doi:10.1016/j.oraloncology. 2018.07.001.
[25] Langevin S, Kuhnell D, Parry T, et al. Comprehensive microRNA-sequencing of exosomes derived from head and neck carcinoma cells in vitro reveals common secretion profiles and potential utility as salivary biomarkers[J]. Oncotarget, 2017, 8(47): 82459-82474. doi:10.18632/oncotarget. 19614.
[26] Kannan A, Hertweck KL, Philley JV, et al. Genetic mutation and exosome signature of human papilloma virus associated oropharyngeal cancer[J]. Sci Rep, 2017, 7: 46102. doi:10.1038/srep46102.
[27] Chen XH, Fu EH, Lou HH, et al. IL-6 induced M1 type macrophage polarization increases radiosensitivity in HPV positive head and neck cancer[J]. Cancer Lett, 2019, 456: 69-79. doi:10.1016/j.canlet. 2019.04.032.
[28] Peacock B, Rigby A, Bradford J, et al. Extracellular vesicle microRNA cargo is correlated with HPV status in oropharyngeal carcinoma[J]. J Oral Pathol Med, 2018, 47(10): 954-963. doi:10.1111/jop. 12781.
[29] Tomasetti M, Re M, Monaco F, et al. MiR-126 in intestinal-type sinonasal adenocarcinomas: exosomal transfer of MiR-126 promotes anti-tumour responses[J]. BMC Cancer, 2018, 18(1): 896. doi:10.1186/s12885-018-4801-z.
[30] Ren K. Exosomes in perspective: a potential surrogate for stem cell therapy[J]. Odontology, 2019, 107(3): 271-284. doi:10.1007/s10266-018-0395-9.
[31] Li L, Lu S, Liang XH, et al. ΓδTDEs: an efficient delivery system for miR-138 with anti-tumoral and immunostimulatory roles on oral squamous cell carcinoma[J]. Mol Ther Nucleic Acids, 2019, 14: 101-113. doi:10.1016/j.omtn. 2018.11.009.
[32] Lu J, Liu QH, Wang F, et al. Exosomal miR-9 inhibits angiogenesis by targeting MDK and regulating PDK/AKT pathway in nasopharyngeal carcinoma[J]. J Exp Clin Cancer Res, 2018, 37(1): 147. doi:10.1186/s13046-018-0814-3.
[33] Di Bonito P, Accardi L, Galati L, et al. Anti-cancer vaccine for HPV-associated neoplasms: focus on a therapeutic HPV vaccine based on a novel tumor antigen delivery method using endogenously engineered exosomes[J]. Cancers(Basel), 2019, 11(2): E138. doi:10.3390/cancers11020138.
[34] 罗轶, 阚丹, 周琦, 等. 外泌体miRNAs在鼻咽癌放射抵抗中的作用[J]. 中国耳鼻咽喉头颈外科, 2019, 26(5): 239-243. doi:10.16066/j.1672-7002. 2019.05.002. LUO Yi, KAN Dan, ZHOU QI, et al. Role of miRNAs from exosomes in the radioresistance of nasopharyngeal carcinoma[J]. Chinese Archives of Otolaryngology-Head and Neck Surgery, 2019, 26(5): 239-243. doi:10.16066/j.1672-7002. 2019.05.002.
[35] Kobayashi E, Aga M, Kondo S, et al. C-terminal farnesylation of UCH-L1 plays a role in transport of Epstein-Barr virus primary oncoprotein LMP1 to exosomes[J]. mSphere, 2018, 3(1): e00030-18. doi:10.1128/msphere. 00030-18.
[36] Zhou YJ, Xia LZ, Lin JG, et al. Exosomes in Nasopharyngeal Carcinoma[J]. J Cancer, 2018, 9(5): 767-777. doi:10.7150/jca. 22505.
[37] Wang CH, Chen L, Huang YY, et al. Exosome-delivered TRPP2 siRNA inhibits the epithelial-mesenchymal transition of FaDu cells[J]. Oncol Lett, 2019, 17(2): 1953-1961. doi:10.3892/ol. 2018.9752.
[1] 朱华明,关建,茆松,张维天,易红良. 低温等离子射频消融辅助咽旁间隙良性肿瘤切除的应用分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 28-33.
[2] 张轶轶综述 薛刚,金春亭审校. 外泌体在甲状腺癌的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 131-135.
[3] 张旭平,刘雪霞综述张华审校. 外泌体在变态反应性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 136-140.
[4] 刘坤,张欣欣. 循环肿瘤细胞在头颈部鳞癌中的富集及检测[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 18-24.
[5] 陈曦,乔明哲. 免疫检查点抑制剂在复发或转移性头颈鳞癌的治疗进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 42-48.
[6] 胡娟娟, 洪育明. 咽旁间隙肿瘤的诊断和治疗[J]. 山东大学耳鼻喉眼学报, 2014, 28(5): 85-90.
[7] 甘卫刚1综述, 洪育明2审校. 整合素β1与头颈部肿瘤关系的研究进展[J]. 山东大学耳鼻喉眼学报, 2011, 25(1): 31-34.
[8] 吕佳宝综述,邱连升审校. p27kip1、Skp2与头颈部肿瘤关系的研究进展[J]. 山东大学耳鼻喉眼学报, 2009, 23(5): 17-20.
[9] 黄 方,朱从月 . p21、p73及PTEN在头颈部多原发癌中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2007, 21(5): 388-392 .
[10] 鞠秀婷,夏 明 综述, 解 光 审校 . CD4+CD25+调节性T细胞与头颈部肿瘤局部免疫抑制的关系[J]. 山东大学耳鼻喉眼学报, 2007, 21(2): 177-180 .
[11] 宋西成,张华,张庆泉 . 血循环DNA的检测与头颈部肿瘤的诊断[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 385-387 .
[12] 朱从月,黄方 . p21、p73和PTEN蛋白表达联合检测在头颈部多原发癌诊断中的价值[J]. 山东大学耳鼻喉眼学报, 2006, 20(4): 352-354 .
[13] 朱从月,杨劲松,黄方 . G1细胞周期调控与头颈部多原发癌的关系[J]. 山东大学耳鼻喉眼学报, 2006, 20(3): 268-271 .
[14] 林海,甄泽年,赵敏,袁友文,杨甫文 . 咽旁间隙肿瘤手术路径探讨(附46例分析)[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 63-64 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨长亮,黄治物,姚行齐,诸勇,孙艺 . 正常气骨导听性脑干反应及其应用[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 9 -13 .
[2] 曹忠良 . 颌面复合伤155例临床分析[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 89 -89 .
[3] 毕景云 . 鼻中隔矫正术后血肿的处理[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 90 -91 .
[4] 刘大昱,潘新良,雷大鹏,许风雷,张立强,栾信庸 . 梨状窝内侧壁癌的手术治疗[J]. 山东大学耳鼻喉眼学报, 2007, 21(1): 8 -11 .
[5] 楼正才 . 掌拳击伤鼓膜损伤机制及临床特点分析[J]. 山东大学耳鼻喉眼学报, 2008, 22(2): 188 -188 .
[6] 刘 艳,刘新义,王金平,李大健 . 后鼓室解剖结构测量观察及临床意义[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 218 -221 .
[7] 赵 敏,王守森,甄泽年,陈贤明,王茂鑫 . 鼻内镜联合显微镜行蝶窦及经蝶鞍区微创手术[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 244 -245 .
[8] 伦 杰,吕心红 . 鼻部脂溢性角化病1例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 252 -252 .
[9] 王红霞,王鹏程 . NSE、S100及GFAP在视网膜母细胞瘤中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 263 -264 .
[10] 黄 方,黄海琼,黄建强,何荷蕃 . 支气管内镜视频监视系统在小儿气管-支气管异物诊治中的应用[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 276 -277 .