山东大学耳鼻喉眼学报 ›› 2020, Vol. 34 ›› Issue (4): 80-86.doi: 10.6040/j.issn.1673-3770.1.2020.049

• 眼缺血综合征多学科精准诊疗 临床研究 • 上一篇    下一篇

大鼠眼缺血综合征模型中视网膜内层神经元可塑性改变和视网膜重构

陈曦,李珊珊,尤冉,赵露,王艳玲   

  1. 陈曦, 李珊珊, 尤冉, 赵露, 王艳玲首都医科大学附属北京友谊医院 眼科, 北京 100050
  • 收稿日期:2020-05-26 出版日期:2020-07-20 发布日期:2020-08-28
  • 基金资助:
    国家自然科学基金(编号:81870686);北京市自然科学基金(编号:7184201);首都卫生发展科研专项(编号:首发2018-1-2021)

Changes in the neural plasticity of neurons and retinal remodeling in the retinal inner nuclear layer of an ocular ischemic syndrome rat model CHEN Xi, LI Shanshan, YOU Ran, ZHAO Lu, WANG Yanling Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China, 100050Abstract: Objective〓

To analyze the changes in the neurons of the retinal inner nuclear layer and in the visual function of rat models with ocular ischemia syndrome. MethodsAt the age of 8 weeks, Brown-Norway rats underwent bilateral common carotid artery occlusion(BCCAO)surgery as the model of ocular ischemia syndrome. After 1 and 2 months since the model was established, the retinal thickness was measured in eyeball slices. By applying immunofluorescence, changes in the morphology and synaptic plasticity of horizontal and bipolar cells in the retinal inner nuclear layer were observed. Changes in the visual function of rats were detected by electrophysiology. ResultsWith prolongation of the retinal ischemia time, the number of cells in each retinal layer decreased, and thicknesses of the inner and outer plexiform layers also decreased. Dendrites of horizontal and bipolar cells decreased or disappeared. The density of presynaptic membrane marker synaptophysin decreased. After 2 months since the modeling, the somatic positions of horizontal and bipolar cells migrated from the outer side to the basal side of the inner nuclear layer and formed new neurites. Synaptophysin was randomly distributed in the outer nuclear layer. Electrophysiology showed markedly reduced a- and b-wave amplitudes in BCCAO rats, indicating that the visual function of the BCCAO rats was impaired, and various retinal cell functions were affected. ConclusionIn rat models with ocular ischemia syndrome, the thickness of retinal layers and number of retinal cells decreased. Two months after the model was established, horizontal and bipolar cells migrated, and synaptic rewiring occurred, resulting in retinal remodeling.   

  1. Key words: Ocular ischemia syndrome;
    Bipolar cells;
    Horizontal cells;
    Neural plasticity;
    Retinal remodeling视网膜缺血通常会导致严重的视力损伤, 其主要原因是相关疾病引起的视网膜血液灌注不足, 如颈动脉狭窄等[1]。在缺血损伤过程中, 视网膜的能量代谢下降, 导致一系列复杂的连锁反应, 如细胞离子稳态的丧失, 离子通道和转运体等功能障碍, 最终导致视网膜神经元的损伤, 特别是内层视网膜神经元的死亡[2-5]。与缺血相关的疾病包括眼缺血综合征(ocular ischemic syndrome, OIS)、视网膜中央动脉阻塞、视网膜中央静脉阻塞、高血压性视网膜病变、糖尿病性视网膜病变和青光眼等[6-8]
  • Received:2020-05-26 Online:2020-07-20 Published:2020-08-28

摘要: 目的 分析眼缺血综合征模型大鼠视网膜内核层神经元的改变及电生理变化情况。 方法 取8周龄Brown-Norway大鼠,采用双侧颈总动脉结扎(BCCAO)手术作为眼缺血综合征造模方法。在造模后1个月和2个月,通过眼球切片测量视网膜厚度,采用免疫荧光方法观察视网膜内核层水平细胞和双极细胞形态以及突触可塑性的变化,采用电生理检测大鼠视功能变化。 结果 随着视网膜缺血时间的延长,视网膜各层细胞数量均出现减少,内丛状层和外丛状层厚度也出现下降。同时,水平细胞和双极细胞树突出现减少或消失,突触前膜标记物突触囊泡蛋白密度出现下降。在造模2个月时,水平细胞和双极细胞的胞体位置从内核层的外侧向内核层的基底侧迁移,并形成新的神经突,而突触囊泡蛋白杂乱地分布于外核层。视网膜电图结果显示a波及b波振幅均下降,表明模型大鼠视功能出现障碍,多种视网膜细胞功能受损。 结论 模型大鼠视网膜各层厚度下降,视网膜细胞数量减少。在造模2个月时,水平细胞及双极细胞出现可塑性变化,包括位置迁移及突触重塑,引起视网膜重构。

Abstract: Objective To analyze the changes in the neurons of the retinal inner nuclear layer and in the visual function of rat models with ocular ischemia syndrome. Methods At the age of 8 weeks, Brown-Norway rats underwent bilateral common carotid artery occlusion(BCCAO)surgery as the model of ocular ischemia syndrome. After 1 and 2 months since the model was established, the retinal thickness was measured in eyeball slices. By applying immunofluorescence, changes in the morphology and synaptic plasticity of horizontal and bipolar cells in the retinal inner nuclear layer were observed. Changes in the visual function of rats were detected by electrophysiology. Results With prolongation of the retinal ischemia time, the number of cells in each retinal layer decreased, and thicknesses of the inner and outer plexiform layers also decreased. Dendrites of horizontal and bipolar cells decreased or disappeared. The density of presynaptic membrane marker synaptophysin decreased. After 2 months since the modeling, the somatic positions of horizontal and bipolar cells migrated from the outer side to the basal side of the inner nuclear layer and formed new neurites. Synaptophysin was randomly distributed in the outer nuclear layer. Electrophysiology showed markedly reduced a- and b-wave amplitudes in BCCAO rats, indicating that the visual function of the BCCAO rats was impaired, and various retinal cell functions were affected. Conclusion In rat models with ocular ischemia syndrome, the thickness of retinal layers and number of retinal cells decreased. Two months after the model was established, horizontal and bipolar cells migrated, and synaptic rewiring occurred, resulting in retinal remodeling.

Key words: Ocular ischemia syndrome, Bipolar cells, Horizontal cells, Neural plasticity, Retinal remodeling

[1] Hata M, Ikeda HO, Kikkawa C, et al. KUS121, a VCP modulator, attenuates ischemic retinal cell death via suppressing endoplasmic Reticulum stress[J]. Sci Rep, 2017, 7: 44873. doi:10.1038/srep44873.
[2] Nivison-Smith L, Khoo P, Acosta ML, et al. Vinpocetine protects inner retinal neurons with functional NMDA glutamate receptors against retinal ischemia[J]. Exp Eye Res, 2018, 167: 1-13. doi:10.1016/j.exer.2017.10.008.
[3] Schmid H, Renner M, Dick HB, et al. Loss of inner retinal neurons after retinal ischemia in rats[J]. Invest Ophthalmol Vis Sci, 2014, 55(4): 2777-2787. doi:10.1167/iovs.13-13372.
[4] Zeng HY, Green WR, Tso MO. Microglial activation in human diabetic retinopathy[J]. Arch Ophthalmol, 2008, 126(2): 227-232. doi:10.1001/archophthalmol.2007.65.
[5] Adamis AP, Berman AJ. Immunological mechanisms in the pathogenesis of diabetic retinopathy[J]. Semin Immunopathol, 2008, 30(2): 65-84. doi:10.1007/s00281-008-0111-x.
[6] Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy[J]. Exp Diabetes Res, 2007, 2007: 95103. doi:10.1155/2007/95103.
[7] Palmhof M, Frank V, Rappard P, et al. From ganglion cell to photoreceptor layer: timeline of deterioration in a rat ischemia/reperfusion model[J]. Front Cell Neurosci, 2019, 13: 174. doi:10.3389/fncel.2019.00174.
[8] Cai M, Zhang XD, Li YY, et al. Toll-like receptor 3 activation drives the inflammatory response in oxygen-induced retinopathy in rats[J]. Br J Ophthalmol, 2015, 99(1): 125-132. doi:10.1136/bjophthalmol-2014-305690.
[9] Mendrinos E, Machinis TG, Pournaras CJ. Ocular ischemic syndrome[J]. Surv Ophthalmol, 2010, 55(1): 2-34. doi:10.1016/j.survophthal.2009.02.024.
[10] Brown GC, Magargal LE. The ocular ischemic syndrome. Clinical, fluorescein angiographic and carotid angiographic features[J]. Int Ophthalmol, 1988, 11(4): 239-251. doi:10.1007/BF00131023.
[11] Malhotra R, Gregory-Evans K. Management of ocular ischaemic syndrome[J]. Br J Ophthalmol, 2000, 84(12): 1428-1431. doi:10.1136/bjo.84.12.1428.
[12] Slakter JS, Spertus AD, Weissman SS and Henkind P. An experimental model of carotid artery occlusive disease[J]. Am J Ophthalmol. 1984,97:168-172. doi: 10.1016/s0002-9394(14)76086-6.
[13] Huang YX, Fan SC, Li J, et al. Bilateral common carotid artery occlusion in the rat as a model of retinal ischaemia[J]. Neuroophthalmology, 2014, 38(4): 180-188. doi:10.3109/01658107.2014.908928.
[14] Lavinsky D, Arterni NS, Achaval M, et al. Chronic bilateral common carotid artery occlusion: a model for ocular ischemic syndrome in the rat[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2006, 244(2): 199-204. doi:10.1007/s00417-005-0006-7.
[15] Li ZY, Zeng YX, Chen X, et al. Neural stem cells transplanted to the subretinal space of rd1 mice delay retinal degeneration by suppressing microglia activation[J]. Cytotherapy, 2016, 18(6): 771-784. doi:10.1016/j.jcyt.2016.03.001. doi: 10.1186/s13287-016-0451-8.
[16] Chen X, Chen Z, Li Z, et al.. Grafted c-kit+/SSEA1- eye-wall progenitor cells delay retinal degeneration in mice by regulating neural plasticity and forming new graft-to-host synapses[J]. Stem Cell Res Ther, 2016, 7:191. doi: 10.1186/s13287-016-0451-8.
[17] Christiansen AT, Sørensen NB, Haanes KA, et al. Neuropeptide Y treatment induces retinal vasoconstriction and causes functional and histological retinal damage in a porcine ischaemia model[J]. Acta Ophthalmol, 2018, 96(8): 812-820. doi:10.1111/aos.13806.
[18] Palmhof M, Lohmann S, Schulte D, et al. Fewer functional deficits and reduced cell death after ranibizumab treatment in a retinal ischemia model[J]. Int J Mol Sci, 2018, 19(6): E1636. doi:10.3390/ijms19061636.
[19] Kim SY, Shim MS, Kim KY, et al. Inhibition of cyclophilin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury[J]. Cell Death Dis, 2014, 5: e1105. doi:10.1038/cddis.2014.80.
[20] Wei YH, Gong JS, Xu ZH, et al. Nrf2 promotes reparative angiogenesis through regulation of NADPH oxidase-2 in oxygen-induced retinopathy[J]. Free Radic Biol Med, 2016, 99: 234-243. doi:10.1016/j.freeradbiomed.2016.08.013.
[21] Reid E, Guduric-Fuchs J, O'Neill CL, et al. Preclinical evaluation and optimization of a cell therapy using human cord blood-derived endothelial colony-forming cells for ischemic retinopathies[J]. Stem Cells Transl Med, 2018, 7(1): 59-67. doi:10.1002/sctm.17-0187.
[22] Joly S, Dejda A, Rodriguez L, et al. Nogo-A inhibits vascular regeneration in ischemic retinopathy[J]. Glia, 2018, 66(10): 2079-2093. doi:10.1002/glia.23462.
[23] Crespo-Garcia S, Reichhart N, Skosyrski S, et al. Individual and temporal variability of the Retina after chronic bilateral common carotid artery occlusion(BCCAO)[J]. PLoS One, 2018, 13(3): e0193961. doi:10.1371/journal.pone.0193961.
[24] Pfeiffer RL, Marc RE, Kondo M, et al. Müller cell metabolic Chaos during retinal degeneration[J]. Exp Eye Res, 2016, 150: 62-70. doi:10.1016/j.exer.2016.04.022.
[25] Jones BW, Kondo M, Terasaki H, et al. Retinal remodeling[J]. Jpn J Ophthalmol, 2012, 56(4): 289-306. doi:10.1007/s10384-012-0147-2.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!