山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (2): 131-135.doi: 10.6040/j.issn.1673-3770.0.2020.206

• 综述 • 上一篇    下一篇

外泌体在甲状腺癌的研究进展

张轶轶1综述 薛刚2,金春亭3审校   

  1. 1.河北北方学院 基础医学院, 河北 张家口 075000;
    2.河北北方学院第一附属医院 耳鼻咽喉头颈外科, 河北 张家口 075061;
    3.河北北方学院 病理学教研室, 河北 张家口 075000
  • 发布日期:2021-04-20
  • 通讯作者: 薛刚. E-mail:xgwjf@163.com; 金春亭. E-mail:18931316005@163.com
  • 基金资助:
    河北省财政厅专科能力建设和专科带头人培养项目(361009);张家口市科技计划项目(1911019D)

Research progress of exosomes in thyroid cancers

ZHANG Yiyi1Overview,XUE Gang2, JIN Chunting3Guidance   

  1. 1. Basic Medical College, Hebei North University, Zhangjiakou 075000, Hebei, China;
    2. Department of Otorhinolaryngology & Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075061, Hebei, China;
    3. Department of Pathology, Hebei North University, Zhangjiakou 075000, Hebei, China
  • Published:2021-04-20

摘要: 外泌体是一种直径50~140 nm的细胞外囊泡,包含DNA、RNA、蛋白质等多种内容物,几乎来源于所有类型的细胞。外泌体存在于血液、乳汁、尿液,通过传递生物活性分子在细胞间通讯中起着关键作用。论文综述外泌体的概况、功能及应用,总结外泌体miRNAs和circRNAs对甲状腺癌的影响及作为一种新型生物标志物的潜能。

关键词: 甲状腺癌, 外泌体, 细胞外囊泡, 微小RNA, 生物标志物

Abstract: The exosome are extracellular vesicle with a diameter of 50-140 nm, generated by almost all types of cell and carrying nucleic acids, proteins, lipids, and metabolites. They are found in all biological fluids such as blood,milk,urine etc.and play a key role in intercellular communication by delivering active biomolecules. This paper rviews the general situation, functions and applications of exosomes, summarize the effects of exosomal miRNAs and circRNAs in thyroid carcinoma and the potential as a new type of biomarkers.

Key words: Thyroid cancers, Exosome, Extracellular vesicles, MicroRNAs(miRNA), Biomarkers

中图分类号: 

  • R736.1
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424. doi:10.3322/caac.21492.
[2] Cabanillas ME, McFadden DG, Durante C. Thyroid cancer[J]. Lancet, 2016, 388(10061):2783-2795. doi:10.1016/s0140-6736(16)30172-6.
[3] Kitahara CM, Sosa JA. The changing incidence of thyroid cancer[J]. Nat Rev Endocrinol, 2016, 12(11):646-653. doi:10.1038/nrendo.2016.110.
[4] Li N, Du XL, Reitzel LR, et al. Impact of enhanced detection on the increase in thyroid cancer incidence in the United States: review of incidence trends by socioeconomic status within the surveillance, epidemiology, and end results registry, 1980-2008[J]. Thyroid, 2013, 23(1):103-110. doi:10.1089/thy.2012.0392.
[5] 邱杰, 孙彦. 肿瘤标志物检测在甲状腺癌临床诊治中的意义[J]. 山东大学耳鼻喉眼学报, 2016, 30(2):28-31. doi:10.6040/j.issn.1673-3770.1.2016.08. QIU Jie, SUN Yan. Role of tumor marker in the diagnosis and treatment of thyroid carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2016, 30(2):28-31. doi:10.6040/j.issn.1673-3770.1.2016.08.
[6] Trimboli P, Seregni E, Treglia G, et al. Procalcitonin for detecting medullary thyroid carcinoma: a systematic review[J]. Endocr Relat Cancer, 2015, 22(3):R157-R164. doi:10.1530/erc-15-0156.
[7] Rajagopal C, Harikumar KB. The origin and functions of exosomes in cancer[J]. Front Oncol, 2018, 8:66. doi:10.3389/fonc.2018.00066.
[8] Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles[J]. Trends Cell Biol, 2017, 27(3):172-188. doi:10.1016/j.tcb.2016.11.003.
[9] Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release[J]. Cell Mol Life Sci, 2018, 75(2):193-208. doi:10.1007/s00018-017-2595-9.
[10] Kalluri R. The biology and function of exosomes in cancer[J]. J Clin Invest, 2016, 126(4):1208-1215. doi:10.1172/jci81135.
[11] Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation[J]. Nat Cell Biol, 2018, 20(3):332-343. doi:10.1038/s41556-018-0040-4.
[12] Wen SW, Lima LG, Lobb RJ, et al. Breast cancer-derived exosomes reflect the cell-of-origin phenotype[J]. Proteomics, 2019, 19(8):e1800180. doi:10.1002/pmic.201800180.
[13] Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478)DOI:10.1126/science.aau6977. doi:10.1126/science.aau6977.
[14] Zhao L, Yu J, Wang J, et al. Isolation and Identification of miRNAs in exosomes derived from serum of colon cancer patients[J]. J Cancer, 2017, 8(7):1145-1152. doi:10.7150/jca.18026.
[15] 叶枫, 董惠芬, 刘镕. 外泌体分离方法的研究进展[J]. 中国病原生物学杂志, 2019, 14(1):118-122. doi:10.13350/j.cjpb.190126. YE Feng, DONG Huifen, LIU Rong. Comparison of methods of isolating exosomes[J]. Journal of Pathogen Biology, 2019, 14(1):118-122. doi:10.13350/j.cjpb.190126.
[16] Welton JL, Khanna S, Giles PJ, et al. Proteomics analysis of bladder cancer exosomes[J]. Mol Cell Proteomics, 2010, 9(6):1324-1338. doi:10.1074/mcp.m000063-mcp201.
[17] Koritzinsky EH, Street JM, Star RA, et al. Quantification of exosomes[J]. J Cell Physiol, 2017, 232(7):1587-1590. doi:10.1002/jcp.25387.
[18] Stoltenburg R, Reinemann C, Strehlitz B. SELEX: a(r)evolutionary method to generate high-affinity nucleic acid ligands[J]. Biomol Eng, 2007, 24(4):381-403. doi:10.1016/j.bioeng.2007.06.001.
[19] 吴金恩, 丁军涛. 外泌体生物学功能及应用研究进展[J]. 动物医学进展, 2016, 37(12):90-94. doi:10.16437/j.cnki.1007-5038.2016.12.018. WU Jin'en, DING Juntao. Progress on biological function and application of exosomes[J]. Progress in Veterinary Medicine, 2016, 37(12):90-94. doi:10.16437/j.cnki.1007-5038.2016.12.018.
[20] Liu Y, Luo F, Wang B, et al. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells[J]. Cancer Lett, 2016, 370(1):125-135. doi:10.1016/j.canlet.2015.10.011.
[21] Clark DJ, Fondrie WE, Yang A, et al. Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes[J]. J Proteomics, 2016, 133:161-169. doi:10.1016/j.jprot.2015.12.023.
[22] Yang WW, Yang LQ, Zhao F, et al. Epiregulin promotes lung metastasis of salivary adenoid cystic carcinoma[J]. Theranostics, 2017, 7(15):3700-3714. doi:10.7150/thno.19712.
[23] 周昌娈, 谭磊, 丁铲. RNA病毒利用外泌体促进病毒感染的研究进展[J]. 微生物学通报, 2017, 44(12):2988-2996. doi:10.13344/j.microbiol.china.170390. ZHOU Changluan, TAN Lei, DING Chan. Advances of RNA virus increasing viral infection through the exosomes[J]. Microbiology, 2017, 44(12):2988-2996. doi:10.13344/j.microbiol.china.170390.
[24] 魏晓晶, 胡晓. 外泌体功能与临床应用研究进展[J]. 中国医药导报, 2018, 15(34):45-48. WEI Xiaojing, HU Xiao. Advances in the study of function and clinical application of exosomes[J]. China Medical Herald, 2018, 15(34):45-48.
[25] Pi F, Binzel DW, Lee TJ, et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression[J]. Nat Nanotechnol, 2018, 13(1):82-89. doi:10.1038/s41565-017-0012-z.
[26] 贺丁冬, 冯艳林, 明心亮, 等. 外泌体源性非编码RNA作为肝癌标志物的研究进展[J]. 武汉大学学报(医学版), 2020, 41(2):255-259. doi:10.14188/j.1671-8852.2019.0577. HE Dingdong, FENG Yanlin, MING Xinliang, et al. Exosome-derived non-coding RNA as biomarkers in hepatocellular carcinoma diagnosis[J]. Medical Journal of Wuhan University, 2020, 41(2):255-259. doi:10.14188/j.1671-8852.2019.0577.
[27] Shi X, Wang B, Feng X, et al. circRNAs and exosomes: a mysterious frontier for human cancer[J]. Mol Ther Nucleic Acids, 2020, 19:384-392. doi:10.1016/j.omtn.2019.11.023.
[28] Tai YL, Chen KC, Hsieh JT, et al. Exosomes in cancer development and clinical applications[J]. Cancer Sci, 2018, 109(8):2364-2374. doi:10.1111/cas.13697.
[29] Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478). doi:10.1126/science.aau6977.
[30] Wu G, Zhou W, Lin X, et al. circRASSF2 Acts as CeRNA and promotes papillary thyroid carcinoma progression through miR-1178/TLR4 signaling pathway[J]. Mol Ther Nucleic Acids, 2020, 19:1153-1163. doi:10.1016/j.omtn.2019.11.037.
[31] Wu G, Zhou W, Pan X, et al. Circular RNA profiling reveals exosomal circ_0006156 as a novel biomarker in papillary thyroid cancer[J]. Mol Ther Nucleic Acids, 2020, 19:1134-1144. doi:10.1016/j.omtn.2019.12.025.
[32] Ye W, Deng X, Fan Y. Exosomal miRNA423-5p mediated oncogene activity in papillary thyroid carcinoma: a potential diagnostic and biological target for cancer therapy[J]. Neoplasma, 2019, 66(4):516-523. doi:10.4149/neo_2018_180824n643.
[33] Wu Q, Sun S, Li Z, et al. Tumour-originated exosomal miR-155 triggers cancer-associated Cachexia to promote tumour progression[J]. Mol Cancer, 2018, 17(1):155. doi:10.1186/s12943-018-0899-5.
[34] Kalluri R. The biology and function of exosomes in cancer[J]. J Clin Investig, 2016, 126(4):1208-1215. doi:10.1172/jci81135.
[35] Wang M, Chen B, Ru Z, et al. CircRNA circ-ITCH suppresses papillary thyroid cancer progression through miR-22-3p/CBL/β-catenin pathway[J]. Biochem Biophys Res Commun, 2018, 504(1):283-288. doi:10.1016/j.bbrc.2018.08.175.
[36] Lee JC, Zhao JT, Gundara J, et al. Papillary thyroid cancer-derived exosomes contain miRNA-146b and miRNA-222[J]. J Surg Res, 2015, 196(1):39-48. doi:10.1016/j.jss.2015.02.027.
[37] Zhu LY, Gangadaran P, Kalimuthu S, et al. Novel alternatives to extracellular vesicle-based immunotherapy - exosome mimetics derived from natural killer cells[J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup3):S166-S179. doi:10.1080/21691401.2018.1489824.
[38] Samsonov R, Burdakov V, Shtam T, et al. Plasma exosomal miR-21 and miR-181a differentiates follicular from papillary thyroid cancer[J]. Tumour Biol, 2016, 37(9):12011-12021. doi:10.1007/s13277-016-5065-3.
[39] Jiang K, Li GP, Chen WJ, et al. Plasma exosomal miR-146b-5p and miR-222-3p are potential biomarkers for lymph node metastasis in papillary thyroid carcinomas[J]. Oncotargets Ther, 2020, 13:1311-1319. doi:10.2147/ott.s231361.
[40] Liang MH, Yu SM, Tang SL, et al. A panel of plasma exosomal miRNAs as potential biomarkers for differential diagnosis of thyroid nodules[J]. Front Genet, 2020, 11:449. doi:10.3389/fgene.2020.00449.
[41] Dai D, Tan Y, Guo L, et al. Identification of exosomal miRNA biomarkers for diagnosis of papillary thyroid cancer by small RNA sequencing[J]. Eur J Endocrinol, 2020, 182(1):111-121. doi:10.1530/eje-19-0524.
[42] Yang C, Wei Y, Yu L, et al. Identification of altered circular RNA expression in serum exosomes from patients with papillary thyroid carcinoma by high-throughput sequencing[J]. Med Sci Monit, 2019, 25:2785-2791. doi:10.12659/msm.915658.
[1] 张旭平,刘雪霞,张华. 外泌体在变态反应性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 136-140.
[2] 潘新良. 加强甲状腺结节及恶性肿瘤的规范治疗[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 1-12.
[3] 陈海兵, 卫亚楠, 许晓泉, 陈曦. 基于XGBoost人工智能结合CT构建甲状腺癌颈部淋巴结转移预测模型[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 40-45.
[4] 邓迪, 刘均, 李林珂, 王吉, 刘吉峰, 吕丹, 王海洋, 甘卫刚, 王君, 李波, 陈飞. 皮瓣二期重建策略应用于气管非环周缺损修复重建[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 52-57.
[5] 房忠菊, 张永侠, 赵建东, 纵亮, 翟性友, 李新建, 彭新, 任楠, 陈立伟, 刘明波. 甲状腺癌颈清扫术后乳糜漏的综合治疗[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 64-68.
[6] 吕静荣,陈淳,马衍,谢晋. 儿童分化型甲状腺癌的临床特征及危险因素分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 88-94.
[7] 冯云,钟志明,陈国庆. 纳米碳在甲状腺乳头状癌隐匿性侧颈转移淋巴结清扫术中的临床应用价值[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 101-106.
[8] 马驰,郑桂彬,孙海清,吴国长,郭雅文,孔杨,宋西成,郑海涛. 加速康复外科理念应用于甲状腺癌手术100例[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 107-110.
[9] 王佳说, 郭星, 阎艾慧. 甲状腺乳头状癌颈淋巴结转移形成巨大囊性变的诊断总结[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 111-113.
[10] 边晓敏, 韩光红, 于丹. 细胞外囊泡在头颈部肿瘤中的研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(1): 99-104.
[11] 高晓倩,姜震,耿琛琛,刘大昱,李荔. 术前超声评估分化型甲状腺癌颈部淋巴结转移[J]. 山东大学耳鼻喉眼学报, 2019, 33(1): 135-139.
[12] 邱杰,孙莎莎,孙彦. 美国癌症联合委员会第8版甲状腺癌TNM分期解读[J]. 山东大学耳鼻喉眼学报, 2017, 31(6): 5-8.
[13] 徐书杭, 李春睿, 刘超. 儿童甲状腺癌的规范化诊治[J]. 山东大学耳鼻喉眼学报, 2017, 31(6): 12-15.
[14] 普布次仁,刘吉峰,巴罗. 甲状腺癌与外周静脉血炎性相关指标[J]. 山东大学耳鼻喉眼学报, 2017, 31(6): 21-24.
[15] 孙国臣,孙彦,张虹,王保为. 儿童分化型甲状腺癌的临床特征及治疗体会[J]. 山东大学耳鼻喉眼学报, 2017, 31(6): 25-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林彬,王挥戈 . 功能性内镜鼻窦手术后鼻黏膜纤毛转归的研究[J]. 山东大学耳鼻喉眼学报, 2006, 20(6): 481 -487 .
[2] 公 蕾,孙 洁,薛子超,李敬华,薛卫国 . 鼻腔鼻窦恶性肿瘤细胞周期的DNA分析[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 193 -195 .
[3] 陈文文 . 1例T/NK淋巴瘤17年演进[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 472 -472 .
[4] 栾建刚,梁传余,文艳君,李炯 . 抑制表皮生长因子受体基因表达的pSIREN-ShuttleRNAi表达载体的构建[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 4 -8 .
[5] 马敬, 钟翠萍 . 手术治疗侵犯翼腭窝的鼻咽纤维血管瘤的方法(附5例报告)[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 30 -32 .
[6] 刘强和,罗香林,耿宛平,陈 晨,雷 迅,刘芳贤,邓 明 . 快速老化小鼠的听功能和耳蜗螺旋神经元的增龄性变化[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 215 -217 .
[7] 郑鹏凌,陈卫国,易笃友,黄清秀,卢 俊 . 耳内镜下吸引清除耳道耵聍55例并文献复习[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 223 -226 .
[8] 马 敬,钟翠萍,严 星,安 飞 . 耳屏软骨修补无残余软骨的鼻中隔穿孔15例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 246 -247 .
[9] 崔哲洙,严永峰,崔春莲,金顺吉 . 嗜酸性粒细胞在变应性鼻炎合并慢性鼻窦炎的分布特点[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 250 -252 .
[10] 赵鲁新,翟 洪,潘 洁 . 超声乳化吸除联合晶状体植入治疗急性闭角型青光眼伴白内障23例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 260 -262 .