山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (4): 123-128.doi: 10.6040/j.issn.1673-3770.0.2020.313
刘凌,张美霞
LIU Ling,ZHANG Meixia
摘要: 近视是最常见的屈光不正,若不行矫正,可造成视觉损伤,影响个人生活质量,造成社会经济负担,成为严重的公共卫生问题。随着近视患病率不断上升,控制近视度数增长,保护眼健康,成为全球关注热点。目前治疗近视的方法包括药物、配镜、手术等。近年来药物治疗近视取得了一定的进展,本文对发现能控制近视的药物,包括毒蕈碱受体拮抗剂、烟碱型受体拮抗剂、血管活性肠肽等治疗近视的机制及研究进展进行综述。
中图分类号:
[1] 世界卫生组织. 第66届世界卫生大会签署2014-2019年防治可避免盲和视觉损伤的全球行动计划[J]. 中华眼科杂志, 2014, 50(3): 233-240. doi:10.3760/cma.j.issn.0412-4081.2014.03.021. [2] Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. doi:10.1016/j.ophtha.2016.01.006. [3] Arumugam B, McBrien NA. Muscarinic antagonist control of myopia: evidence for M4 and M1 receptor-based pathways in the inhibition of experimentally-induced axial myopia in the tree shrew[J]. Invest Ophthalmol Vis Sci, 2012, 53(9): 5827-5837. doi:10.1167/iovs.12-9943. [4] Tong LY, Cui DM, Zeng JW. Topical bendazol inhibits experimental myopia progression and decreases the ocular accumulation of HIF-1α protein in young rabbits[J]. Ophthalmic Physiol Opt, 2020, 40(5): 567-576. doi:10.1111/opo.12717. [5] Barathi VA, Kwan JL, Tan QSW, et al. Muscarinic cholinergic receptor(M2)plays a crucial role in the development of myopia in mice[J]. Dis Model Mech, 2013, 6(5): 1146-1158. doi:10.1242/dmm.010967. [6] Carr BJ, Mihara K, Ramachandran R, et al. Myopia-inhibiting concentrations of muscarinic receptor antagonists block activation of Alpha2A-adrenoceptors in vitro[J]. Invest Ophthalmol Vis Sci, 2018, 59(7): 2778-2791. doi:10.1167/iovs.17-22562. [7] McBrien NA, Moghaddam HO, Reeder AP. Atropine reduces experimental myopia and eye enlargement via a nonaccommodative mechanism[J]. Invest Ophthalmol Vis Sci, 1993, 34(1): 205-215. [8] 陈辉. 毒蕈碱拮抗剂减缓近视发展的研究进展[J]. 中华实验眼科杂志, 2017, 35(6): 556-560. doi:10.3760/cma.j.issn.2095-0160.2017.06.015. CHEN Hui. Advances of muscarinic antagonists slowing the progression of myopia[J]. Chinese Journal of Experimental Ophthalmology, 2017, 35(6): 556-560. doi:10.3760/cma.j.issn.2095-0160.2017.06.015. [9] Schwahn HN, Kaymak H, Schaeffel F. Effects of atropine on refractive development, dopamine release, and slow retinal potentials in the chick[J]. Vis Neurosci, 2000, 17(2): 165-176. doi:10.1017/s0952523800171184. [10] Barathi VA, Chaurasia SS, Poidinger M, et al. Involvement of GABA transporters in atropine-treated myopic Retina as revealed by iTRAQ quantitative proteomics[J]. J Proteome Res, 2014, 13(11): 4647-4658. doi:10.1021/pr500558y. [11] Wang LZ, Syn N, Li SY, et al. The penetration and distribution of topical atropine in animal ocular tissues[J]. Acta Ophthalmol, 2019, 97(2): e238-e247. doi:10.1111/aos.13889. [12] Hsiao YT, Chang WA, Kuo MT, et al. Systematic analysis of transcriptomic profile of the effects of low dose atropine treatment on scleral fibroblasts using next-generation sequencing and bioinformatics[J]. Int J Med Sci, 2019, 16(12): 1652-1667. doi:10.7150/ijms.38571. [13] Pineles SL, Kraker RT, VanderVeen DK, et al. Atropine for the prevention of myopia progression in children: a report by the American academy of ophthalmology[J]. Ophthalmology, 2017, 124(12): 1857-1866. doi:10.1016/j.ophtha.2017.05.032. [14] Chia A, Chua WH, Cheung YB, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses(Atropine for the Treatment of Myopia 2)[J]. Ophthalmology, 2012, 119(2): 347-354. doi:10.1016/j.ophtha.2011.07.031. [15] Chia A, Chua WH, Wen L, et al. Atropine for the treatment of childhood myopia: changes after stopping atropine 0.01%, 0.1% and 0.5%[J]. Am J Ophthalmol, 2014, 157(2): 451-457.e1. doi:10.1016/j.ajo.2013.09.020. [16] Yam JC, Jiang Y, Tang SM, et al. Low-concentration atropine for myopia progression(LAMP)study: a randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% atropine eye drops in myopia control[J]. Ophthalmology, 2019, 126(1): 113-124. doi:10.1016/j.ophtha.2018.05.029. [17] Guo L, Fan L, Tao J, et al. Use of topical 0.01% atropine for controlling near work-induced transient myopia: a randomized, double-masked, placebo-controlled study[J]. J Ocul Pharmacol Ther, 2020, 36(2): 97-101. doi:10.1089/jop.2019.0062. [18] 戴淑真, 张黎, 王丽娅, 等. 哌仑西平对近视鸡眼巩膜基质MMP-2和TIMP-2表达的影响[J]. 中国病理生理杂志, 2012, 28(8): 1494-1499. doi:10.3969/j.issn.1000-4718.2012.08.028. DAI Shuzhen, ZHANG Li, WANG Liya, et al. Effects of pirenzepine on expression of MMP-2 and TIMP-2 in stroma of sclera in chick myopic eyes[J]. Chinese Journal of Pathophysiology, 2012, 28(8): 1494-1499. doi:10.3969/j.issn.1000-4718.2012.08.028. [19] Siatkowski RM, Cotter SA, Crockett RS, et al. Two-year multicenter, randomized, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia[J]. J Am Assoc Pediatr Ophthalmol Strabismus, 2008, 12(4): 332-339. doi:10.1016/j.jaapos.2007.10.014. [20] 韩雯婷,荣翱,徐蔚.消旋山莨菪碱联合阿托品滴眼液预防青少年近视疗效分析[J].中华医学杂志,2019,99(24):1859-1863. doi:10.3760/cma.j.issn.0376-2491.2019.24.005. HAN Wenting, RONG Ao, XU Wei. Combination with different anticholinergic eyedrops for the treatment of children myopia[J]. National Medical Journal of China, 2019, 99(24):1859-1863. doi:10.3760/cma.j.issn.0376-2491.2019.24.005. [21] Cottriall CL, Truong HT, McBrien NA. Inhibition of myopia development in chicks using himbacine: a role for M(4)receptors?[J]. Neuroreport, 2001, 12(11): 2453-2456. doi:10.1097/00001756-200108080-00033. [22] Stone RA, Sugimoto R, Gill AS, et al. Effects of nicotinic antagonists on ocular growth and experimental myopia[J]. Invest Ophthalmol Vis Sci, 2001, 42(3): 557-565. [23] El-Shazly AA. Passive smoking exposure might be associated with hypermetropia[J]. Ophthalmic Physiol Opt, 2012, 32(4): 304-307. doi:10.1111/j.1475-1313.2012.00918.x. [24] Stone RA, Pendrak K, Sugimoto R, et al. Local patterns of image degradation differentially affect refraction and eye shape in chick[J]. Curr Eye Res, 2006, 31(1): 91-105. doi:10.1080/02713680500479517. [25] Witkovsky P. Dopamine and retinal function[J]. Doc Ophthalmol, 2004, 108(1): 17-40. doi:10.1023/b:doop.0000019487.88486.0a. [26] Yan T, Xiong W, Huang F, et al. Daily injection but not continuous infusion of apomorphine inhibits form-deprivation myopia in mice[J]. Invest Ophthalmol Vis Sci, 2015, 56(4): 2475-2485. doi:10.1167/iovs.13-12361. [27] Huang F, Zhang L, Wang Q, et al. Dopamine D1 receptors contribute critically to the apomorphine-induced inhibition of form-deprivation myopia in mice[J]. Invest Ophthalmol Vis Sci, 2018, 59(6): 2623-2634. doi:10.1167/iovs.17-22578. [28] Wang PB, Wang H, Liu SZ, et al. Effect of vasoactive intestinal peptide receptor antagonist VIPhybrid on the development of form deprivation myopia in chicks[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2008, 33(8): 669-675. [29] Leung KH, Luo SM, Kwarteng R, et al. The myopia susceptibility locus vasoactive intestinal peptide receptor 2(VIPR2)contains variants with opposite effects[J]. Sci Rep, 2019, 9: 18165. doi:10.1038/s41598-019-54619-8. [30] Cui D, Trier K, Zeng J, et al. Adenosine receptor protein changes in Guinea pigs with form deprivation myopia[J]. Acta Ophthalmol, 2010, 88(7): 759-765. doi:10.1111/j.1755-3768.2009.01559.x. [31] Trier K, Olsen EB, Kobayashi T, et al. Biochemical and ultrastructural changes in rabbit sclera after treatment with 7-methylxanthine, theobromine, acetazolamide, or L-ornithine[J]. Br J Ophthalmol, 1999, 83(12): 1370-1375. doi:10.1136/bjo.83.12.1370. [32] Trier K, Munk Ribel-Madsen S, Cui D, et al. Systemic 7-methylxanthine in retarding axial eye growth and myopia progression: a 36-month pilot study[J]. J Ocul Biol Dis Infor, 2008, 1(2/3/4): 85-93. doi:10.1007/s12177-008-9013-3. [33] Hung LF, Arumugam B, Ostrin L, et al. The adenosine receptor antagonist, 7-methylxanthine, alters emmetropizing responses in infant macaques[J]. Invest Ophthalmol Vis Sci, 2018, 59(1): 472-486. doi:10.1167/iovs.17-22337. [34] Wan W, Cui D, Trier K, et al. Effect of 7-methylxanthine on human retinal pigment epithelium cells cultured in vitro[J]. Mol Vis, 2017, 23: 1006-1014. [35] Fischer AJ, Seltner RLP, Stell WK. Opiate and N-methyl-D-aspartate receptors in form-deprivation myopia[J]. Vis Neurosci, 1998, 15(6): 1089-1096. doi:10.1017/s0952523898156080. [36] Seltner RLP, Rohrer B, Grant V, et al. Endogenous opiates in the chick Retina and their role in form-deprivation myopia[J]. Vis Neurosci, 1997, 14(5): 801-809. doi:10.1017/s0952523800011548. [37] Fujikado T, Tsujikawa K, Tamura M, et al. Effect of a nitric oxide synthase inhibitor on lens-induced myopia[J]. Ophthalmic Res, 2001, 33(2): 75-79. doi:10.1159/000055647. [38] Beauregard C, Liu Q, Chiou GCY. Effects of nitric oxide donors and nitric oxide synthase substrates on ciliary muscle contracted by carbachol and endothelin for possible use in myopia prevention[J]. J Ocular Pharmacol Ther, 2001, 17(1): 1-9. doi:10.1089/108076801750125577. [39] Carr BJ, Stell WK. Nitric oxide(NO)mediates the inhibition of form-deprivation myopia by atropine in chicks[J]. Sci Rep, 2016, 6(1): 9. doi:10.1038/s41598-016-0002-7. [40] Lisa A. Ostrin, Ashutosh Jnawali, Andrew Carkeet, et al. Twenty-four hour ocular and systemic diurnal rhythms in children[J]. Ophthalmic and Physiological Optics, 2019, 39(5): 358-369. doi: 10.1111/opo.12633. [41] 尹靓瑶, 陈悦, 衡欣. 外源性褪黑素对豚鼠形觉剥夺性近视褪黑素受体、iNOS、c-fos表达的影响[J]. 眼科新进展, 2011, 31(5): 407-410. doi:10.13389/j.cnki.rao.2011.05.006. YIN Liangyao, CHEN Yue, HENG Xin. Effect of exogenous melatonin on expression of melatonin receptor, iNOS and c-fos in Guinea pigs with form deprived myopia[J]. Recent Advances in Ophthalmology, 2011, 31(5): 407-410. doi:10.13389/j.cnki.rao.2011.05.006. [42] Stephanie Kearne, Lisa O'Donoghue L. Kirsty Pourshahidi, et al. Myopes have significantly higher serum melatonin concentrations than non-myopes[J]. Ophthalmic & physiological optics, 2017, 37(5): 557-567. doi: 10.1111/opo.12396 [43] Burfield HJ, Carkeet A, Ostrin LA. Ocular and systemic diurnal rhythms in emmetropic and myopic adults[J]. Invest Ophthalmol Vis Sci, 2019, 60(6): 2237-2247. doi:10.1167/iovs.19-26711. [44] Jia Y, Hu DN, Zhou J. Human aqueous humor levels of TGF-β2: relationship with axial length[J]. Biomed Res Int, 2014, 2014: 258591. doi:10.1155/2014/258591. [45] 徐福如, 蒋文君, 吴建峰, 等. 近视性巩膜重塑相关因子研究进展[J]. 眼科新进展, 2019, 39(9): 877-881. doi:10.13389/j.cnki.rao.2019.0200. XU Furu, JIANG Wenjun, WU Jianfeng, et al. Recent advance on cytokines associated with scleral remodeling in myopia[J]. Recent Advances in Ophthalmology, 2019, 39(9): 877-881. doi:10.13389/j.cnki.rao.2019.0200. [46] Tian XD, Cheng YX, Liu GB, et al. Expressions of type I collagen, α2 integrin and β1 integrin in sclera of Guinea pig with defocus myopia and inhibitory effects of bFGF on the formation of myopia[J]. Int J Ophthalmol, 2013, 6(1): 54-58. doi:10.3980/j.issn.2222-3959.2013.01.11. [47] 刘小琦. 胰岛素样生长因子Ⅱ及其受体基因与汉族人高度近视的关联研究[J]. 实用医院临床杂志, 2018, 15(6): 45-47. doi:10.3969/j.issn.1672-6170.2018.06.014. LIU Xiaoqi. A genetic association study between IGF2/IGF2R and high myopia in a Han Chinese population[J]. Practical Journal of Clinical Medicine, 2018, 15(6): 45-47. doi:10.3969/j.issn.1672-6170.2018.06.014. [48] 蔡晓静, 朱煌, 冯彦青. 葛根素滴眼液对青少年近视眼的作用[J]. 中国中医眼科杂志, 2013, 23(5): 340-343. doi:10.13444/j.cnki.zgzyykzz.003198. CAI Xiaojing, ZHU Huang, FENG Yanqing. Effects of puerarin eye drop on children myopia[J]. China Journal of Chinese Ophthalmology, 2013, 23(5): 340-343. doi:10.13444/j.cnki.zgzyykzz.003198. [49] Carr BJ, Nguyen CT, Stell WK. Alpha 2 -adrenoceptor agonists inhibit form-deprivation myopia in the chick[J]. Clin Exp Optom, 2019, 102(4): 418-425. doi:10.1111/cxo.12871. [50] 胡诞宁. 近视的病因与发病机制研究进展[J]. 眼视光学杂志, 2004, 6(1): 1-5. doi:10.3760/cma.j.issn.1674-845X.2004.01.001. HU Danning. Progress in the study of myopic etiology and pathogenesis[J]. Chinese Journal of Optometry & Ophthalmology, 2004, 6(1): 1-5. doi:10.3760/cma.j.issn.1674-845X.2004.01.001. |
[1] | 代诚李宾中. 多焦点软性角膜接触镜应用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 100-105. |
[2] | 张陶然,王薇,李明铭,黄映湘. IVR治疗mCNV患者黄斑中心凹下脉络膜厚度分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 68-71. |
[3] | 彭娇,钟定娟,陈蛟,左筠,王华. 光学区直径与暗瞳直径的关系对不同程度近视患者SMILE术后视觉质量的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 100-107. |
[4] | 李莹. 重视角膜屈光手术操作规范及并发症防治[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 1-6. |
[5] | 张颖,雷玉琳,马志兴,杨星花,张静,侯杰. SMILE联合快速角膜交联术后角膜光密度的早期临床观察[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 52-58. |
[6] | 刘艺,于明坤,孙伟,邵震,胡媛媛,毕宏生. 角膜塑形术控制儿童近视有效性与安全性的Meta分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 92-100. |
[7] | 冉宏运,蒋可可,张杰. 早产儿视网膜病变患儿屈光影响因素研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 118-124. |
[8] | 岳鹏程,杜秋萱,孔玲,乔镇涛. 未矫正近视性屈光参差患者双眼间调节力对照研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 76-80. |
[9] | 宋丽华,陶远,崔凤华,郭媛媛,王红. 屏气对非接触眼压计测量值的影响[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 108-111. |
[10] | 任雨馨赵博军. 病理性近视脉络膜新生血管的诊断与治疗[J]. 山东大学耳鼻喉眼学报, 2020, 34(5): 157-162. |
[11] | 李莹,姜洋. 惟论近视矫正眼外与眼内手术方式的选择[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 1-6. |
[12] | 万博,李东辉,罗岩,李莹. 中心孔型有晶状体眼后房型人工晶体植入术后拱高变化及相关因素分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 36-41. |
[13] | 王暄琪. 可植入式眼内镜术后拱高及相关因素[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 72-78. |
[14] | 李锐,李勇,谢洪涛,岳章显,刘钊臣,袁慧敏. 眼压波动对人工晶体植入术患者眼底黄斑及视盘血流密度的影响分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(1): 89-92. |
[15] | 张丹凤. 青少年近视散瞳前后眼球生物参数变化的分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 121-124. |
|