山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (5): 85-92.doi: 10.6040/j.issn.1673-3770.0.2021.145

• • 上一篇    下一篇

Oculyzer和CASIA2眼前节分析仪的对比研究

徐雯,郑燕,付彩云,张丽,王玥,张秋露,柳静,胡雅斌,翟长斌   

  1. 首都医科大学附属北京同仁医院 北京同仁眼科中心/北京市眼科学与视觉科学重点实验室, 北京 100730
  • 发布日期:2021-09-29
  • 通讯作者: 翟长斌. E-mail:zhaicb@sina.com
  • 基金资助:
    吴阶平医学基金会临床科研专项资助基金(32067502021-04-15)

Comparison of anterior segment analyzers: the Oculyzer and CASIA2

XU Wen, ZHENG Yan, FU Caiyun, ZHANG Li, WANG Yue, ZHANG Qiulu, LIU Jing, HU Yabin, ZHAI Changbin   

  1. Beijing Tongren Ophthalmology Center / Beijing Tongren Ophthalmology Center Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
  • Published:2021-09-29

摘要: 目的 对比眼前节分析仪Oculyzer和CASIA2测量近视患者角膜屈光力、角膜厚度及Q值等相关数据的差异。 方法 分别使用眼前节分析仪Oculyzer和CASIA2测量125例近视患者角膜前后表面陡峭轴屈光力(Ks)、平坦轴屈光力(Kf)及平均角膜屈光力(Km),中央角膜厚度(CCT)、最薄点角膜厚度(TCT)及角膜前后表面Q值等参数,通过配对t检验及Bland Altman分析对结果进行统计处理。 结果 CASIA2测得角膜前表面Ks(44.38±1.64)D、Kf(42.87±1.35)D及Km(43.63±1.44)D高于Oculyzer所测Ks(44.23±1.71)D、Kf(42.71±1.39)D及Km(43.45±1.48)D,差异有统计学意义(P<0.001),但二者所测散光度分别为(1.50±0.87)D、(1.51±0.90)D,无统计学意义(P=0.98);Oculyzer所测角膜后表面Ks(-6.50±0.86)D、Kf(-6.02±0.26)D及散光度数(0.52±0.22)D均高于CASIA2所测角膜后表面Ks(-6.35±0.29)D、Kf(-5.97±0.24)D及散光度数(0.38±0.15)D,差异有统计学意义(P<0.001),二者所测后表面Km分别为(-6.17±1.15)D、(-6.16±0.25)D,差值无统计学意义(P=0.87);Oculyzer所测CCT(542.86±33.04)μm及TCT(539.72±33.39)μm。CASIA2所测CCT(529.53±32.35)μm及TCT(524.66±32.40)μm,差异有统计学意义(P<0.001);CASIA2所测角膜后表面Q值(-0.38±0.16)大于Oculyzer所测(-0.28±0.17),有统计学意义(P<0.001),但二者所测角膜前表面Q值分别为(-0.33±0.13)、(-0.33±0.12),差异无统计学意义(P=0.62)。Bland Altman一致性分析示,两设备测量角膜前、后表面屈光力,散光度数及Q值的95%一致性界限(95%LoA)范围较窄,一致性较好,角膜CCT及TCT的95%LoA范围较宽,一致性较差。 结论 两种设备所测角膜屈光力、角膜厚度及Q值存在一定差异,临床应用中应综合分析取舍。

关键词: Oculyzer, CASIA2, 眼前节分析仪, 角膜屈光力, 角膜厚度

Abstract: Objective To compare the differences in corneal refractive power, corneal thickness, and Q value measured by the Oculyzer and CASIA2 devices in patients with myopia. Methods This study evaluated 249 eyes in 125 patients with myopia. The steep keratometry diopter(Ks), flat keratometry diopter(Kf), mean keratometry diopter(Km), astigmatism degree, Q values of the anterior and posterior corneal surfaces, central corneal thickness(CCT), and thinnest point of the corneal thickness(TCT)were recorded. The differences and agreement between measurements were evaluated using paired t-tests and Bland Altman plots., respectively. Results The Ks, Kf, and Km values of the anterior corneal surface measured by the Oculyzer and CASIA2 differed significantly [(44.23±1.71)D vs(44.38±1.64)D,(42.71±1.39)D vs(42.87±1.35)D, and(43.45±1.48)D vs(43.63±1.44)D, respectively)](all P<0.001). The astigmatism degrees of the anterior corneal surface(1.51±0.90)D vs(1.50±0.87)D did not differ significantly(P=0.98). The Ks, Kf, and astigmatism degrees of the posterior corneal surface measured by the two instruments also differed significantly [(-6.50±0.86)D vs(-6.35±0.29)D,(-6.02±0.26)vs(-5.97±0.24)D, and(0.52±0.22)D vs(0.38±0.15)D, respectively](all P<0.001). The Km values of the posterior corneal surface(-6.17±1.15)D vs(-6.16±0.25)D did not differ significantly(P=0.87). The CCT and TCT measured by the two instruments [(542.86±33.04)μm vs(529.53±32.35)μm and(539.72±33.39)μm vs(524.66±32.40)μm differed significantly(all P<0.001). The Q values of the anterior corneal surface measured by the two instruments(-0.33±0.12)vs(-0.33±0.13)did not differ significantly(P=0.62). The Q values of the posterior corneal surface(-0.28±0.17)vs(-0.38±0.16)significantly(P<0.001). Bland-Altman analysis showed that the 95% limit of agreement(LoA)of the anterior and posterior corneal surface refractive power, astigmatism degree, and Q values measured by the two devices were relatively narrow and showed good consistency. However, the 95%LoA of CCT and TCT between the two devices was relatively wide and showed poor consistency. Conclusions The differences in corneal refractive power, corneal thicknesses, and Q values between the Oculyzer and CASIA2 suggest the need for comprehensive analysis and selection in clinical practice.

Key words: Oculyzer, CASIA2, Anterior segment analyzer, Corneal refractive power, Corneal thickness

中图分类号: 

  • R765.21
[1] Hamer CA, Buckhurst H, Purslow C, et al. Comparison of reliability and repeatability of corneal curvature assessment with six keratometers[J]. Clin Exp Optom, 2016, 99(6): 583-589. doi:10.1111/cxo.12329.
[2] Jesus DA, Iskander DR. Age-related changes of the corneal speckle by Optical Coherence Tomography[J]. Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Int Conf, 2015, 2015: 5659-5662. doi:10.1109/EMBC.2015.7319676.
[3] Jin HY, Ou ZM, Guo HK, et al. Myopic laser corneal refractive surgery reduces interdevice agreement in the measurement of anterior corneal curvature[J]. Eye Contact Lens, 2018, 44(Suppl 1): S151-S157. doi:10.1097/ICL.0000000000000364.
[4] 李凯军, 高东鸿, 张冬松, 等. 眼前节处理系统个体化切削治疗复杂屈光不正[J]. 山东大学耳鼻喉眼学报, 2012,26(5): 5-6. doi: 10.6040/j.issn.1673-3770.2012.05.003. LI Kaijun, GAO Donghong, ZHANG Dongsong, et al. Topography-guided customized corneal ablation for complex refractive errors[J]. J Otolaryngol Ophthalmol Shandong Univ, 2012, 26(5): 5-6. doi: 10.6040/j.issn.1673-3770.2012.05.003.
[5] Chen X, Gu X, Wang W, et al. The characteristics and factors associated with intraocular lens tilt and decentration after cataract surgery[J]. J Cataract Refract Surg, 2020, 46(8): 1126-1131. doi: 10.1097/j.jcrs.0000000000000219.
[6] Li XP, Zhou YJ, Young CA, et al. Comparison of a new anterior segment optical coherence tomography and Oculus Pentacam for measurement of anterior chamber depth and corneal thickness[J]. Ann Transl Med, 2020, 8(14): 857. doi:10.21037/atm-20-187.
[7] Shoji T, Kato N, Ishikawa S, et al. In vivo crystalline lens measurements with novel swept-source optical coherent tomography: an investigation on variability of measurement[J]. BMJ Open Ophthalmol, 2017, 1(1): e000058. doi:10.1136/bmjophth-2016-000058.
[8] Hoshikawa R, Kamiya K, Fujimura F, et al. Comparison of conventional keratometry and total keratometry in normal eyes[J]. Biomed Res Int, 2020, 2020: 8075924. doi:10.1155/2020/8075924.
[9] Næser K, Savini G, Bregnhj JF. Corneal Powers measured with a rotating Scheimpflug camera[J]. Br J Ophthalmol, 2016, 100(9): 1196-1200. doi:10.1136/bjophthalmol-2015-307474.
[10] Saito A, Kamiya K, Fujimura F, et al. Comparison of angle-to-angle distance using three devices in normal eyes[J]. Eye(Lond), 2020, 34(6): 1116-1120. doi:10.1038/s41433-019-0653-2.
[11] Liu Z, Ruan X, Wang W, et al. Comparison of radius of anterior lens surface curvature measurements in vivo using the anterior segment optical coherence tomography and Scheimpflug imaging[J]. Ann Transl Med, 2020, 8(5): 177. doi: 10.21037/atm.2020.01.100.
[12] Schiano-Lomoriello D, Bono V, Abicca I, et al. Repeatability of anterior segment measurements by optical coherence tomography combined with Placido disk corneal topography in eyes with keratoconus[J]. Sci Rep, 2020, 10(1): 1124. doi:10.1038/s41598-020-57926-7.
[13] Lu M, Wang X, Lei L, et al. Quantitative analysis of anterior chamber inflammation using the novel CASIA2 optical coherence tomography[J]. Am J Ophthalmol, 2020, 216: 59-68. doi: 10.1016/j.ajo.2020.03.032.
[14] Kimura S, Morizane Y, Shiode Y, et al. Assessment of tilt and decentration of crystalline lens and intraocular lens relative to the corneal topographic axis using anterior segment optical coherence tomography[J]. PLoS One, 2017, 12(9): e0184066. doi:10.1371/journal.pone.0184066.
[15] Xu BY, Penteado RC, Weinreb RN. Diurnal variation of optical coherence tomography measurements of static and dynamic anterior segment parameters[J]. J Glaucoma, 2018, 27(1): 16-21. doi:10.1097/IJG.0000000000000832.
[16] Zhang T, Zhou Y, Young CA, et al. Comparison of a new swept-source anterior segment optical coherence tomography and a scheimpflug camera for measurement of corneal curvature[J]. Cornea, 2020, 39(7): 818-822. doi:10.1097/ico.0000000000002280.
[17] Satou T, Kato S, Igarashi A, et al. Prediction of pupil size under binocular open-view settings using the new CASIA2 device[J]. Int Ophthalmol, 2019, 39(4): 791-796. doi: 10.1007/s10792-018-0879-1.
[18] Jin GM, Xiao B, Zhou YJ, et al. Agreement of corneal curvature and central corneal thickness obtained from a swept-source OCT and Pentacam in ectopia lentis patients[J]. Int J Ophthalmol, 2020, 13(8): 1244-1249. doi:10.18240/ijo.2020.08.10.
[19] 高奕晨, 蒋元丰, 林松, 等. 新型眼前节相干光层析成像仪与Scheimpflug眼前节分析仪测量年龄相关性白内障患者角膜屈光力及散光的比较[J]. 中华眼科杂志, 2021, 57(1): 48-55. doi:10.3760/cma.j.cn112142-20200904-00574. Gao YC, Jiang YF, Lin S, et al. Comparison of corneal refractive power and astigmatism measured by the new anterior segment optical coherence tomographic device and Scheimpflug imaging device in age-related cataract patients[J]. Zhonghua Yan Ke Za Zhi, 2021, 57(1): 48-55. doi:10.3760/cma.j.cn112142-20200904-00574.
[20] 刘俐利, 陈辉. Pentacam眼前节测量分析系统对青壮年近视患者角膜前、后表面Q值的测量和分析[J]. 眼视光学杂志, 2009, 11(1): 23-26. doi: CNKI:SUN:ZXYK.0.2009-01-011. LIU Lingli, CHEN Hui. Investigation of the Q-values of the anterior and posterior corneal surfaces of young myopic patients using a Pentacam measurement system and an evaluation system for the anterior segment of the eye[J]. Chinese Journal of Optometry & Ophthalmology, 2009, 11(1): 23-26. doi: CNKI:SUN:ZXYK.0.2009-01-011.
[21] Alió JL, Piñero D, Muftuoglu O. Corneal wavefront-guided retreatments for significant night vision symptoms after myopic laser refractive surgery[J]. Am J Ophthalmol, 2008, 145(1): 65-74. doi:10.1016/j.ajo.2007.08.025.
[22] 刘文静. TransPRK与LASEK对薄角膜近视眼术后视力、屈光度及角膜生物力学性能的影响[J]. 山东大学耳鼻喉眼学报, 2016, 30(6): 70-74. doi: 10.6040/j.issn.1673-3770.0.2015.502. LIU Wenjing. Influence of Trans PRK and LASEK on postoperative vision, diopter and corneal biomechanical properties in myopic eyes with thin cornea[J]. J Otolaryngol Ophthalmol Shandong Univ, 2016, 30(6): 70-74. doi: 10.6040/j.issn.1673-3770.0.2015.502.
[23] Chung B, Lee H, Choi BJ, et al. Clinical outcomes of an optimized prolate ablation procedure for correcting residual refractive errors following laser surgery[J]. Korean J Ophthalmol, 2017, 31(1): 16-24. doi: 10.3341/kjo.2017.31.1.16.
[24] Christopher KL, Patnaik JL, Miller DC, et al. Accuracy of intraoperative aberrometry, barrett true-K with and without posterior cornea measurements, shammas-PL, and haigis-L formulas after myopic refractive surgery[J]. J Refract Surg Thorofare N J, 2021, 37(1): 60-68. doi:10.3928/1081597X-20201030-02.
[25] Piao JJ, Li YJ, Whang WJ, et al. Comparative evaluation of visual outcomes and corneal asphericity after laser-assisted in situ keratomileusis with the six-dimension Amaris excimer laser system[J]. PLoS One, 2017, 12(2): e0171851. doi:10.1371/journal.pone.0171851.
[26] Gjerdrum B, Gundersen KG, Lundmark PO, et al. Repeatability of OCT-based versus scheimpflug- and reflection-based keratometry in patients with hyperosmolar and normal tear film[J]. Clin Ophthalmol, 2020, 14: 3991-4003. doi:10.2147/OPTH.S280868.
[27] Xu BY, Mai DD, Penteado RC, et al. Reproducibility and agreement of anterior segment parameter measurements obtained using the CASIA2 and spectralis OCT2 optical coherence tomography devices[J]. J Glaucoma, 2017, 26(11): 974-979. doi:10.1097/IJG.0000000000000788.
[28] Schröder S, Mäurer S, Eppig T, et al. Comparison of corneal tomography: repeatability, precision, misalignment, mean elevation, and mean pachymetry[J]. Curr Eye Res, 2018, 43(6): 709-716. doi:10.1080/02713683.2018.1441873.
[1] 张春晓, 李志伟, 徐文文, 李凤娇, 陶祥臣, 牟国营. 核黄素/UVA诱导的角膜交联术治疗晚期圆锥角膜的安全性和有效性[J]. 山东大学耳鼻喉眼学报, 2015, 29(2): 86-88.
[2] 郝颖娟1,杨庆松2,周跃华2,易省平1,翟长斌2. 飞秒激光在薄瓣LASIK手术中制作的角膜瓣厚度形态观察[J]. 山东大学耳鼻喉眼学报, 2013, 27(4): 26-31.
[3] 李凯军,高东鸿,张冬松,姜桂芳,路晖,尚惠芳,王荃. 眼前节处理系统个体化切削治疗复杂屈光不正[J]. 山东大学耳鼻喉眼学报, 2012, 26(5): 5-5.
[4] 姜洋1, 邱佳冀2, 金玉梅1, 李莹1. 眼反应分析仪在临床眼压测量中的应用[J]. 山东大学耳鼻喉眼学报, 2012, 26(4): 58-60.
[5] 张韦华,高建鲁. 前房生物学参数测量进展[J]. 山东大学耳鼻喉眼学报, 2012, 26(3): 86-89.
[6] 杨学秋1, 赵静静1, 庄文娟2. 临床常用角膜厚度的测量方法[J]. 山东大学耳鼻喉眼学报, 2012, 26(2): 80-82.
[7] 雷玉琳1,郑秀云1,党光福2,刘素美1. Pentacam、OrbscanⅡ和A超测量中央角膜厚度的分析[J]. 山东大学耳鼻喉眼学报, 2011, 25(2): 89-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邓基波,孙奉乾,许安廷 . 大前庭导水管综合征[J]. 山东大学耳鼻喉眼学报, 2006, 20(2): 116 -118 .
[2] 周子宁,金国威 . 喉气管狭窄的预防和治疗进展[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 462 -465 .
[3] 周斌,李滨 . 鼻内窥镜下鼻窦鼻息肉手术75例疗效观察[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 24 -26 .
[4] 徐赛男,杨雷 . 红霉素促进鼻息肉上皮细胞凋亡的实验研究[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 27 -29 .
[5] 张玉光,韩旭光,张华,王旭,徐湘辉 . 改良穿透性角膜移植术治疗真菌性角膜炎[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 94 -95 .
[6] 刘联合 . 颈深部脓肿37例[J]. 山东大学耳鼻喉眼学报, 2008, 22(2): 180 -181 .
[7] 谢治年 ,姬长友 . RNA干扰及其在喉鳞癌研究中的应用[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 200 -203 .
[8] 乔 艺,倪关森,陈文文 . 改良悬雍垂腭咽成形术联合鼻腔手术治疗阻塞性睡眠呼吸暂停综合征38例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 206 -208 .
[9] 汪晓锋,林 昶,程金妹 . 不同龄小鼠内耳中ABAD的表达及临床意义[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 207 -211 .
[10] 凡启军,黄治物,梅 玲,肖伯奎 . 荧光定量PCR测定水杨酸钠作用后大鼠耳蜗基因的表达[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 212 -214 .