山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (5): 85-92.doi: 10.6040/j.issn.1673-3770.0.2021.145
徐雯,郑燕,付彩云,张丽,王玥,张秋露,柳静,胡雅斌,翟长斌
XU Wen, ZHENG Yan, FU Caiyun, ZHANG Li, WANG Yue, ZHANG Qiulu, LIU Jing, HU Yabin, ZHAI Changbin
摘要: 目的 对比眼前节分析仪Oculyzer和CASIA2测量近视患者角膜屈光力、角膜厚度及Q值等相关数据的差异。 方法 分别使用眼前节分析仪Oculyzer和CASIA2测量125例近视患者角膜前后表面陡峭轴屈光力(Ks)、平坦轴屈光力(Kf)及平均角膜屈光力(Km),中央角膜厚度(CCT)、最薄点角膜厚度(TCT)及角膜前后表面Q值等参数,通过配对t检验及Bland Altman分析对结果进行统计处理。 结果 CASIA2测得角膜前表面Ks(44.38±1.64)D、Kf(42.87±1.35)D及Km(43.63±1.44)D高于Oculyzer所测Ks(44.23±1.71)D、Kf(42.71±1.39)D及Km(43.45±1.48)D,差异有统计学意义(P<0.001),但二者所测散光度分别为(1.50±0.87)D、(1.51±0.90)D,无统计学意义(P=0.98);Oculyzer所测角膜后表面Ks(-6.50±0.86)D、Kf(-6.02±0.26)D及散光度数(0.52±0.22)D均高于CASIA2所测角膜后表面Ks(-6.35±0.29)D、Kf(-5.97±0.24)D及散光度数(0.38±0.15)D,差异有统计学意义(P<0.001),二者所测后表面Km分别为(-6.17±1.15)D、(-6.16±0.25)D,差值无统计学意义(P=0.87);Oculyzer所测CCT(542.86±33.04)μm及TCT(539.72±33.39)μm。CASIA2所测CCT(529.53±32.35)μm及TCT(524.66±32.40)μm,差异有统计学意义(P<0.001);CASIA2所测角膜后表面Q值(-0.38±0.16)大于Oculyzer所测(-0.28±0.17),有统计学意义(P<0.001),但二者所测角膜前表面Q值分别为(-0.33±0.13)、(-0.33±0.12),差异无统计学意义(P=0.62)。Bland Altman一致性分析示,两设备测量角膜前、后表面屈光力,散光度数及Q值的95%一致性界限(95%LoA)范围较窄,一致性较好,角膜CCT及TCT的95%LoA范围较宽,一致性较差。 结论 两种设备所测角膜屈光力、角膜厚度及Q值存在一定差异,临床应用中应综合分析取舍。
中图分类号:
[1] Hamer CA, Buckhurst H, Purslow C, et al. Comparison of reliability and repeatability of corneal curvature assessment with six keratometers[J]. Clin Exp Optom, 2016, 99(6): 583-589. doi:10.1111/cxo.12329. [2] Jesus DA, Iskander DR. Age-related changes of the corneal speckle by Optical Coherence Tomography[J]. Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Int Conf, 2015, 2015: 5659-5662. doi:10.1109/EMBC.2015.7319676. [3] Jin HY, Ou ZM, Guo HK, et al. Myopic laser corneal refractive surgery reduces interdevice agreement in the measurement of anterior corneal curvature[J]. Eye Contact Lens, 2018, 44(Suppl 1): S151-S157. doi:10.1097/ICL.0000000000000364. [4] 李凯军, 高东鸿, 张冬松, 等. 眼前节处理系统个体化切削治疗复杂屈光不正[J]. 山东大学耳鼻喉眼学报, 2012,26(5): 5-6. doi: 10.6040/j.issn.1673-3770.2012.05.003. LI Kaijun, GAO Donghong, ZHANG Dongsong, et al. Topography-guided customized corneal ablation for complex refractive errors[J]. J Otolaryngol Ophthalmol Shandong Univ, 2012, 26(5): 5-6. doi: 10.6040/j.issn.1673-3770.2012.05.003. [5] Chen X, Gu X, Wang W, et al. The characteristics and factors associated with intraocular lens tilt and decentration after cataract surgery[J]. J Cataract Refract Surg, 2020, 46(8): 1126-1131. doi: 10.1097/j.jcrs.0000000000000219. [6] Li XP, Zhou YJ, Young CA, et al. Comparison of a new anterior segment optical coherence tomography and Oculus Pentacam for measurement of anterior chamber depth and corneal thickness[J]. Ann Transl Med, 2020, 8(14): 857. doi:10.21037/atm-20-187. [7] Shoji T, Kato N, Ishikawa S, et al. In vivo crystalline lens measurements with novel swept-source optical coherent tomography: an investigation on variability of measurement[J]. BMJ Open Ophthalmol, 2017, 1(1): e000058. doi:10.1136/bmjophth-2016-000058. [8] Hoshikawa R, Kamiya K, Fujimura F, et al. Comparison of conventional keratometry and total keratometry in normal eyes[J]. Biomed Res Int, 2020, 2020: 8075924. doi:10.1155/2020/8075924. [9] Næser K, Savini G, Bregnhj JF. Corneal Powers measured with a rotating Scheimpflug camera[J]. Br J Ophthalmol, 2016, 100(9): 1196-1200. doi:10.1136/bjophthalmol-2015-307474. [10] Saito A, Kamiya K, Fujimura F, et al. Comparison of angle-to-angle distance using three devices in normal eyes[J]. Eye(Lond), 2020, 34(6): 1116-1120. doi:10.1038/s41433-019-0653-2. [11] Liu Z, Ruan X, Wang W, et al. Comparison of radius of anterior lens surface curvature measurements in vivo using the anterior segment optical coherence tomography and Scheimpflug imaging[J]. Ann Transl Med, 2020, 8(5): 177. doi: 10.21037/atm.2020.01.100. [12] Schiano-Lomoriello D, Bono V, Abicca I, et al. Repeatability of anterior segment measurements by optical coherence tomography combined with Placido disk corneal topography in eyes with keratoconus[J]. Sci Rep, 2020, 10(1): 1124. doi:10.1038/s41598-020-57926-7. [13] Lu M, Wang X, Lei L, et al. Quantitative analysis of anterior chamber inflammation using the novel CASIA2 optical coherence tomography[J]. Am J Ophthalmol, 2020, 216: 59-68. doi: 10.1016/j.ajo.2020.03.032. [14] Kimura S, Morizane Y, Shiode Y, et al. Assessment of tilt and decentration of crystalline lens and intraocular lens relative to the corneal topographic axis using anterior segment optical coherence tomography[J]. PLoS One, 2017, 12(9): e0184066. doi:10.1371/journal.pone.0184066. [15] Xu BY, Penteado RC, Weinreb RN. Diurnal variation of optical coherence tomography measurements of static and dynamic anterior segment parameters[J]. J Glaucoma, 2018, 27(1): 16-21. doi:10.1097/IJG.0000000000000832. [16] Zhang T, Zhou Y, Young CA, et al. Comparison of a new swept-source anterior segment optical coherence tomography and a scheimpflug camera for measurement of corneal curvature[J]. Cornea, 2020, 39(7): 818-822. doi:10.1097/ico.0000000000002280. [17] Satou T, Kato S, Igarashi A, et al. Prediction of pupil size under binocular open-view settings using the new CASIA2 device[J]. Int Ophthalmol, 2019, 39(4): 791-796. doi: 10.1007/s10792-018-0879-1. [18] Jin GM, Xiao B, Zhou YJ, et al. Agreement of corneal curvature and central corneal thickness obtained from a swept-source OCT and Pentacam in ectopia lentis patients[J]. Int J Ophthalmol, 2020, 13(8): 1244-1249. doi:10.18240/ijo.2020.08.10. [19] 高奕晨, 蒋元丰, 林松, 等. 新型眼前节相干光层析成像仪与Scheimpflug眼前节分析仪测量年龄相关性白内障患者角膜屈光力及散光的比较[J]. 中华眼科杂志, 2021, 57(1): 48-55. doi:10.3760/cma.j.cn112142-20200904-00574. Gao YC, Jiang YF, Lin S, et al. Comparison of corneal refractive power and astigmatism measured by the new anterior segment optical coherence tomographic device and Scheimpflug imaging device in age-related cataract patients[J]. Zhonghua Yan Ke Za Zhi, 2021, 57(1): 48-55. doi:10.3760/cma.j.cn112142-20200904-00574. [20] 刘俐利, 陈辉. Pentacam眼前节测量分析系统对青壮年近视患者角膜前、后表面Q值的测量和分析[J]. 眼视光学杂志, 2009, 11(1): 23-26. doi: CNKI:SUN:ZXYK.0.2009-01-011. LIU Lingli, CHEN Hui. Investigation of the Q-values of the anterior and posterior corneal surfaces of young myopic patients using a Pentacam measurement system and an evaluation system for the anterior segment of the eye[J]. Chinese Journal of Optometry & Ophthalmology, 2009, 11(1): 23-26. doi: CNKI:SUN:ZXYK.0.2009-01-011. [21] Alió JL, Piñero D, Muftuoglu O. Corneal wavefront-guided retreatments for significant night vision symptoms after myopic laser refractive surgery[J]. Am J Ophthalmol, 2008, 145(1): 65-74. doi:10.1016/j.ajo.2007.08.025. [22] 刘文静. TransPRK与LASEK对薄角膜近视眼术后视力、屈光度及角膜生物力学性能的影响[J]. 山东大学耳鼻喉眼学报, 2016, 30(6): 70-74. doi: 10.6040/j.issn.1673-3770.0.2015.502. LIU Wenjing. Influence of Trans PRK and LASEK on postoperative vision, diopter and corneal biomechanical properties in myopic eyes with thin cornea[J]. J Otolaryngol Ophthalmol Shandong Univ, 2016, 30(6): 70-74. doi: 10.6040/j.issn.1673-3770.0.2015.502. [23] Chung B, Lee H, Choi BJ, et al. Clinical outcomes of an optimized prolate ablation procedure for correcting residual refractive errors following laser surgery[J]. Korean J Ophthalmol, 2017, 31(1): 16-24. doi: 10.3341/kjo.2017.31.1.16. [24] Christopher KL, Patnaik JL, Miller DC, et al. Accuracy of intraoperative aberrometry, barrett true-K with and without posterior cornea measurements, shammas-PL, and haigis-L formulas after myopic refractive surgery[J]. J Refract Surg Thorofare N J, 2021, 37(1): 60-68. doi:10.3928/1081597X-20201030-02. [25] Piao JJ, Li YJ, Whang WJ, et al. Comparative evaluation of visual outcomes and corneal asphericity after laser-assisted in situ keratomileusis with the six-dimension Amaris excimer laser system[J]. PLoS One, 2017, 12(2): e0171851. doi:10.1371/journal.pone.0171851. [26] Gjerdrum B, Gundersen KG, Lundmark PO, et al. Repeatability of OCT-based versus scheimpflug- and reflection-based keratometry in patients with hyperosmolar and normal tear film[J]. Clin Ophthalmol, 2020, 14: 3991-4003. doi:10.2147/OPTH.S280868. [27] Xu BY, Mai DD, Penteado RC, et al. Reproducibility and agreement of anterior segment parameter measurements obtained using the CASIA2 and spectralis OCT2 optical coherence tomography devices[J]. J Glaucoma, 2017, 26(11): 974-979. doi:10.1097/IJG.0000000000000788. [28] Schröder S, Mäurer S, Eppig T, et al. Comparison of corneal tomography: repeatability, precision, misalignment, mean elevation, and mean pachymetry[J]. Curr Eye Res, 2018, 43(6): 709-716. doi:10.1080/02713683.2018.1441873. |
[1] | 张春晓, 李志伟, 徐文文, 李凤娇, 陶祥臣, 牟国营. 核黄素/UVA诱导的角膜交联术治疗晚期圆锥角膜的安全性和有效性[J]. 山东大学耳鼻喉眼学报, 2015, 29(2): 86-88. |
[2] | 郝颖娟1,杨庆松2,周跃华2,易省平1,翟长斌2. 飞秒激光在薄瓣LASIK手术中制作的角膜瓣厚度形态观察[J]. 山东大学耳鼻喉眼学报, 2013, 27(4): 26-31. |
[3] | 李凯军,高东鸿,张冬松,姜桂芳,路晖,尚惠芳,王荃. 眼前节处理系统个体化切削治疗复杂屈光不正[J]. 山东大学耳鼻喉眼学报, 2012, 26(5): 5-5. |
[4] | 姜洋1, 邱佳冀2, 金玉梅1, 李莹1. 眼反应分析仪在临床眼压测量中的应用[J]. 山东大学耳鼻喉眼学报, 2012, 26(4): 58-60. |
[5] | 张韦华,高建鲁. 前房生物学参数测量进展[J]. 山东大学耳鼻喉眼学报, 2012, 26(3): 86-89. |
[6] | 杨学秋1, 赵静静1, 庄文娟2. 临床常用角膜厚度的测量方法[J]. 山东大学耳鼻喉眼学报, 2012, 26(2): 80-82. |
[7] | 雷玉琳1,郑秀云1,党光福2,刘素美1. Pentacam、OrbscanⅡ和A超测量中央角膜厚度的分析[J]. 山东大学耳鼻喉眼学报, 2011, 25(2): 89-91. |
|