山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (1): 20-24.doi: 10.6040/j.issn.1673-3770.0.2021.350

• • 上一篇    下一篇

新生儿动脉血血气分析与听力筛查结果相关性

盘琳琳1,方旭华1,翟丰1,桂一丁2,边洲亮3,陈洁1   

  1. 1.上海交通大学医学院附属上海儿童医学中心 耳鼻喉口腔颌面外科, 上海 200127;
    2.上海交通大学医学院附属上海儿童医学中心 儿保科, 上海 200127;
    3.上海交通大学医学院附属上海第九人民医院 肿瘤科, 上海 200125
  • 出版日期:2022-01-10 发布日期:2022-02-22
  • 通讯作者: 陈洁. E-mail:jie_chen888@163.com
  • 基金资助:
    国家自然科学基金(81900939);上海市综合医院中西医结合专项(ZHYY-ZXYJHZX-202009)

The correlation between arterial blood gas analysis and hearing screening results in neonates

PAN Linlin1, FANG Xuhua1, ZHAI Feng1, GUI Yiding2, BIAN Zhouliang3, CHEN Jie1   

  1. 1.Department of Otolaryngology and Oral & Maxillofacial Surgery, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University, Shanghai 200127, China;
    2.Department of Children Healthcare, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University, Shanghai 200127, China;
    3. Department of Oncology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200125, China
  • Online:2022-01-10 Published:2022-02-22

摘要: 目的 探讨新生儿动脉血血气分析指标与听力筛查结果的关系。 方法 回顾性分析医学中心新生儿科496例患儿听力筛查结果和入院时动脉血血气分析指标。 结果 自动听觉脑干反应(AABR)、畸变产物耳声发射(DPOAE)和声导抗和总听力筛查通过率分别为61.9%(307/496)、61.3%(304/496)、90.1%(447/496)和56.7%(281/496)。三种听力筛查方法通过率差异有统计学意义(χ2=131.00,P<0.001)。AABR与DPOAE测试结果一致性极强(Kappa=0.817,P<0.001),两者与声导抗测试一致性较弱(Kappa值分别为0.2620.256,P均<0.001)。单因素Logisitic分析显示乳酸升高(OR=0.544,P=0.001)、二氧化碳分压升高(OR=1.917,P=0.009)、pH降低(OR=1.692,P=0.021)与听力筛查不通过显著相关。多因素Logisitic分析显示,乳酸(OR=0.627,P=0.018)、氧分压(OR=1.493,P=0.047)与听力筛查结果不通过显著相关。二氧化碳分压、pH和血氧饱和度和听力筛查结果无明显相关性(P>0.05)。 结论 新生儿缺氧及其伴随的血气变化可能会影响听力筛查结果。

关键词: 听力筛查, 乳酸, 动脉血pH, 氧分压, 二氧化碳分压, 血氧饱和度

Abstract: Objective This study aimed to examine the relationship between arterial blood gas and hearing screening test in neonates. Methods The results of hearing screening test and arterial blood gas analysis of 496 newborns in the Neonatal Department of Shanghai Children's Medical Center were retrospectively analyzed. Results The pass rate of automated auditory brainstem response(AABR), distortion product otoacoustic emissions(DPOAE)and acoustic immittance is 61.9%(307/496), 61.3%(304/496), 90.1%(447/496)and 56.7%(281/496)respectively. There were significant differences in the pass rates of the three hearing screening methods(χ2=131.00, P<0.001). The pass rate of AABR was in extremely strong consistency with that of DPOAE(Kappa=0.817, P<0.001), while the pass rate of both AABR and DPOAE were in very weak consistency with that of acoustic immittance(Kappa=0.262 and 0.256, respectively. all P<0.001). Univariate Logistic regression analysis showed that the failure of hearing screening was correlated with increased lactic acid(OR=0.544, P=0.001), increased partial pressure of carbon dioxide(OR=1.917, P=0.009)and decreased pH value(OR=1.692, P=0.021). Multivariate Logistic regression analysis showed that failed hearing screening results were correlated with increased lactic acid(OR=0.627, P=0.018)and decreased partial oxygen pressure(OR=1.493, P=0.047). No significant correlations were found between hearing screening and the results of partial pressure of carbon dioxide, pH and blood oxygen saturation(P>0.05). Conclusion Neonatal hypoxia and the accompanying change of blood gas might have an impact on hearing screening results.

Key words: Hearing screening, Lactic acid, Arterial blood pH, Oxygen partial pressure, Carbon dioxide partial pressure, Oxygen saturation

中图分类号: 

  • R764.5
[1] Yun CF, Wang ZJ, Gao JM, et al. Prevalence and social risk factors for hearing impairment in Chinese children-A national survey[J]. Int J Environ Res Public Health, 2017, 14(1): E88. doi:10.3390/ijerph14010088.
[2] Joint Committee on Infant Hearing. Year 2007 position statement: principles and guidelines for early hearing detection and intervention programs[R]. American Speech-Language-Hearing Association, 2007. doi:10.1044/policy.ps2007-00281.
[3] Howell JB, Appelbaum EN, Armstrong MF, et al. An analysis of risk factors in unilateral versus bilateral hearing loss[J]. Ear Nose Throat J, 2019, 98(6): 330-333. doi:10.1177/0145561319840578.
[4] Rei M, Ayres-de-Campos D, Bernardes J. Neurological damage arising from intrapartum hypoxia/acidosis[J]. Best Pract Res Clin Obstet Gynaecol, 2016, 30: 79-86. doi:10.1016/j.bpobgyn.2015.04.011.
[5] Leite JN, Silva VS, Buzo BC. Emissões otoacústicas em recém-nascidos com hipóxia perinatal leve e moderada[J]. CoDAS, 2016, 28(2): 93-98. doi:10.1590/2317-1782/20162015086.
[6] Fitzgerald MP, Reynolds A, Garvey CM, et al. Hearing impairment and hypoxia ischaemic encephalopathy: Incidence and associated factors[J]. Eur J Paediatr Neurol, 2019, 23(1):81-86. doi: 10.1016/j.ejpn.2018.10.002.
[7] 盘琳琳,孔令漪,翟丰,等. 新生儿听力障碍常见危险因素及听力筛查方法研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(1):131-137. doi: 10.6040/j.issn.1673-3770.0.2021.080. PAN Linlin, KONG Lingyi, ZHAI Feng, et al. Research progress on auditory risk factors and hearing screening methods among neonates[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(1):131-137. doi: 10.6040/j.issn.1673-3770.0.2021.080.
[8] Zhai F, Fang XH, Li YB, et al. Risk factors for failure in first-time hearing screening tests among high-risk neonates in neonatal intensive care unit[J]. Audiol Neurootol, 2021, 26(5): 338-345. doi:10.1159/000512761.
[9] 国家卫生和计划生育委员会新生儿疾病筛查听力诊断治疗组. 婴幼儿听力损失诊断与干预指南[J]. 中华耳鼻咽喉头颈外科杂志, 2018, 53(3): 181-188. doi:10.3760/cma.j.issn.1673-0860.2018.03.004.
[10] Kvestad E, Lie KK, Eskild A, et al. Sensorineural hearing loss in children: the association with Apgar score. A registry-based study of 392, 371 children in Norway[J]. Int J Pediatr Otorhinolaryngol, 2014, 78(11): 1940-1944. doi:10.1016/j.ijporl.2014.08.032.
[11] Jiang ZD, Zang Z, Wilkinson AR. Cochlear function in 1-year-old term infants born with hypoxia-ischaemia or low Apgar scores[J]. J Paediatr Child Health, 2012, 48(2): 160-165. doi:10.1111/j.1440-1754.2011.02066.x.
[12] 苏关影. 脐血动脉血气分析联合apgar评分在新生儿窒息病情评价中的应用价值[J]. 中外医学研究, 2021, 19(15): 45-47. doi:10.14033/j.cnki.cfmr.2021.15.017. SU Guanying. Application value of umbilical cordblood arterial blood gas analysis combined with apgar score in illness evaluation of neonatal asphyxia[J]. Chinese and Foreign Medical Research, 2021, 19(15): 45-47.doi:10.14033/j.cnki.cfmr.2021.15.017.
[13] Sohmer H, Freeman S, Schmuel M. ABR threshold is a function of blood oxygen level[J]. Hear Res, 1989, 40(1/2): 87-91. doi:10.1016/0378-5955(89)90102-0.
[14] 杨万超, 刘翔, 陈剑峰, 等. 高碳酸血症对严重低氧缺血大鼠脑损伤的影响[J]. 临床麻醉学杂志, 2017, 33(5): 473-477. doi:10.3969/j.issn.1004-5805.2017.05.015. YANG Wanchao, LIU Xiang, CHEN Jianfeng, et al.Effect of hypercapnia on blood brain barrier in rats with severe hypoxic-ischemic brain injury[J]. Journal of Clinical Anesthesiology, 2017, 33(5): 473-477. doi:10.3969/j.issn.1004-5805.2017.05.015.
[15] Koyama S, Kaga K, Sakata H, et al. Pathological findings in the temporal bone of newborn infants with neonatal asphyxia[J]. Acta Otolaryngol, 2005, 125(10): 1028-1032. doi:10.1080/00016480410023092.
[16] 李世成, 田野. 间歇性缺氧模拟高原训练对小鼠骨骼肌乳酸代谢的影响[J]. 中国运动医学杂志, 1999, 18(2): 126-128. doi:10.16038/j.1000-6710.1999.02.011. LI Shicheng, TIAN Ye. Effects of training atmoderate altitude on lactic acid metabolism of skeletal muscles[J]. Chinese Jouranal of Sports Medicine, 1999, 18(2): 126-128. doi:10.16038/j.1000-6710.1999.02.011.
[17] Ferguson BS, Rogatzki MJ, Goodwin ML, et al. Lactate metabolism: historical context, prior misinterpretations, and current understanding[J]. Eur J Appl Physiol, 2018, 118(4): 691-728. doi:10.1007/s00421-017-3795-6.
[18] 施风泉, 邱洪生, 李文忠, 等. 新生儿缺氧缺血性脑病严重程度与动脉血乳酸、脑脊液乳酸水平的相关性[J]. 实用临床医药杂志, 2020, 24(17): 86-88. doi:10.7619/jcmp.202017023. SHI Fengquan, QIU Hongsheng, LI Wenzhong, et al. Correlations between severity of neonatal hypoxic ischemic encephalopathy and levels of arterial blood lactic acid as well as cerebrospinal fluid lactic acid[J]. Journal of Clinical Medicine in Practice, 2020, 24(17): 86-88. doi:10.7619/jcmp.202017023.
[19] Jiang ZD, Shao XM, Wilkinson AR. Brainstem auditory-evoked responses in full-term newborn infants with temporary low Apgar score[J]. Acta Oto Laryngol, 2005, 125(2): 163-168. doi:10.1080/00016480410017684.
[1] 倪坤,孙世冰,李晓艳. 1 000 Hz声导抗在高危新生儿听力筛查中的应用[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 43-47.
[2] 盘琳琳,孔令漪综述翟丰,陈洁审校. 新生儿听力障碍常见危险因素及听力筛查方法研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(1): 131-137.
[3] 马小雨,边晓敏综述于丹审校. 单羧酸转运蛋白家族与头颈部鳞状细胞癌的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 125-130.
[4] 王国强, 赵春红, 霍红, 龚志云, 宋伟伟, 严丽霞, 李雪华, 王伟丽. 早产儿听力筛查结果及其听力障碍危险因素[J]. 山东大学耳鼻喉眼学报, 2015, 29(4): 7-10.
[5] 周晓娓, 王跃建, 段光荣, 虞幼军. 听力诊疗网络平台的开发[J]. 山东大学耳鼻喉眼学报, 2014, 28(6): 79-84.
[6] 余崇仙,杨克林,张晓敏,汪平 . 听力筛查未通过婴幼儿的客观听力评估[J]. 山东大学耳鼻喉眼学报, 2013, 27(6): 38-41.
[7] 刘志奇1,2,刘立思1,杨琨3 . 新生儿听力筛查11894例结果分析[J]. 山东大学耳鼻喉眼学报, 2013, 27(2): 8-12.
[8] 张恩东,李大建,苗乐杰. 重症监护病房与母婴同室新生儿听力筛查比较[J]. 山东大学耳鼻喉眼学报, 2011, 25(2): 29-31.
[9] 张俊瑶 朱富高 孙美红. 6159例新生儿听力筛查结果分析[J]. 山东大学耳鼻喉眼学报, 2009, 23(4): 38-40.
[10] 杨 琨,刘志奇,黄治物 . 正常新生儿226Hz及1000Hz探测音鼓室导抗测试[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 420-423 .
[11] 曲 玲 . 243例未通过听力筛查的婴幼儿ABR结果分析[J]. 山东大学耳鼻喉眼学报, 2008, 22(2): 189-190 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 和守盰,陈 斌,殷善开,苏开明,姜 晓 . OSAHS患者UPPP手术前后上气道形态学变化[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 385 -388 .
[2] 宋西成,张庆泉,夏永宏,刘鲁沂,于鲁欣,王 郜,姜秀良 . 阻塞性睡眠呼吸暂停低通气综合征患者的术后ICU监护[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 389 -392 .
[3] 薛卫国,孙洁,金铮,石文斌,辛露,林国经,李加耘 . 盐酸左氧氟沙星滴耳液治疗中耳炎的疗效观察[J]. 山东大学耳鼻喉眼学报, 2006, 20(4): 300 -303 .
[4] 张庆泉,李新民,王 强,王有福 . 鼻内镜下犬齿窝径路治疗上颌窦病变[J]. 山东大学耳鼻喉眼学报, 2007, 21(1): 38 -39 .
[5] 董 频,李晓艳,屠理强,孟晴虹,王 桑,谢 晋,姜 彦 . 晚期下咽癌、喉复发癌术后颈部缺损整复组织的选择[J]. 山东大学耳鼻喉眼学报, 2007, 21(5): 385 -387 .
[6] 姜绍红,朱宇宏,王 强,宋西成 . 难治性原发性鼻出血101例[J]. 山东大学耳鼻喉眼学报, 2007, 21(6): 542 -544 .
[7] 王昭迪,时光刚 . 虚拟现实技术在鼻外科的应用[J]. 山东大学耳鼻喉眼学报, 2008, 22(1): 74 -77 .
[8] 雷迅1 ,刘强和1 ,孔中雨1 ,向秋2 ,耿宛平1 ,黄辉3 ,董译元1 ,刘芳贤1
. EGCG对鼻咽癌细胞株裸鼠移植瘤的放疗增敏作用以及对Survivin表达的影响[J]. 山东大学耳鼻喉眼学报, 2009, 23(1): 6 -9 .
[9] 吴世普
. 鼻内镜下联合下鼻道开窗治疗上颌窦真菌球15例[J]. 山东大学耳鼻喉眼学报, 2009, 23(2): 73 -74 .
[10] 刘伟综述,殷团芳,任基浩审校. 中耳胆脂瘤的发生及其与细胞凋亡的关系[J]. 山东大学耳鼻喉眼学报, 2010, 24(01): 29 -33 .