山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (3): 51-60.doi: 10.6040/j.issn.1673-3770.0.2023.294
• 上海市第六人民医院耳鼻咽喉头颈外科献礼“六院120周年”纪念专题 • 上一篇
董文琪,于栋祯
DONG Wenqi, YU Dongzhen
摘要: 目的 研究在耳蜗听力形成期和成熟期小鼠耳蜗的细胞群以及调控螺旋神经节细胞和内外毛细胞间信号通路表达的配受体。 方法 通过收集公共数据库小鼠耳蜗单细胞测序数据,并利用CellChat软件研究内外毛细胞与临近细胞潜在的细胞与细胞间相互作用。 结果 Seurat分析显示小鼠耳蜗具有15群主要的细胞类型,分别是成纤维细胞、Hensen细胞、鼓膜边界细胞、Coch+/Spp1+成纤维细胞、内外沟细胞、内侧指状细胞/内侧边界细胞、外毛细胞、Reissner膜、巨噬细胞、梭形细胞/根细胞、螺旋神经节、中间细胞、施万细胞/卫星胶质细胞、内毛细胞、红细胞。CellChat通讯分析揭示出P14小鼠耳蜗内外毛细胞和螺旋神经节间的通讯关系主要由Bdnf/Ntrk2信号通路介导,P28时期主要由Ggf6/(Bmpr1a+Bmpr2)、Bmp6/(Bmpr1a+Bmpr2)、Ntf3/Ntrk3、Ntf3/Ntrk2以及Spp1/Cd44、Spp1/(Itgav+Itgb1)、Pdgfa/Pdgfra、Gas6/Tyro3信号通路介导。 结论 本研究基于单细胞转录组数据,初步识别出在耳蜗听力形成期和成熟期螺旋神经节细胞和内外毛细胞间特异性的配受体。
中图分类号:
| [1] Greenzang KA. Hearing Loss[J]. J Clin Oncol, 2018, 36(1): 94-5. doi.org/10.1200/jco.2017.75.2212 [2] Hazlitt RA, Min J, Zuo J. Progress in the development of preventative drugs for cisplatin-induced hearing loss[J]. J Med Chem, 2018, 61(13): 5512-5524. doi:10.1021/acs.jmedchem.7b01653 [3] Bu C, Xu L, Han YC, et al. C-Myb protects cochlear hair cells from cisplatin-induced damage via the PI3K/Akt signaling pathway[J]. Cell Death Discov, 2022, 8(1): 78. doi:10.1038/s41420-022-00879-9 [4] Ching JK, Ju JS, Pittman SK, et al. Increased autophagy accelerates colchicine-induced muscle toxicity[J]. Autophagy, 2013, 9(12): 2115-2125. doi:10.4161/auto.26150 [5] Vogl C, Neef J, Wichmann C. Methods for multiscale structural and functional analysis of the mammalian cochlea[J]. Mol Cell Neurosci, 2022, 120: 103720. doi:10.1016/j.mcn.2022.103720 [6] Ashmore J, Gale J. The cochlea[J]. Curr Biol, 2000, 10(9): R325-R327. doi:10.1016/S0960-9822(00)00457-7 [7] Dallos P. The active cochlea [J]. J Neurosci, 1992, 12(12): 4575-85. doi.org/10.1523/jneurosci.12-12-04575.1992 [8] Carricondo F, Romero-Gómez B. The cochlear spiral ganglion neurons: the auditory portion of the VIII nerve[J]. Anat Rec, 2019, 302(3): 463-471. doi:10.1002/ar.23815 [9] Sanders TR, Kelley MW. Specification of neuronal subtypes in the spiral ganglion begins prior to birth in the mouse[J]. Proc Natl Acad Sci USA, 2022, 119(48): e2203935119. doi:10.1073/pnas.2203935119 [10] Nayagam BA, Muniak MA, Ryugo DK. The spiral ganglion: connecting the peripheral and central auditory systems[J]. Hear Res, 2011, 278(1/2): 2-20. doi:10.1016/j.heares.2011.04.003 [11] Zhang KD, Coate TM. Recent advances in the development and function of type II spiral ganglion neurons in the mammalian inner ear[J]. Semin Cell Dev Biol, 2017, 65: 80-87. doi:10.1016/j.semcdb.2016.09.017 [12] Wichmann C, Moser T. Relating structure and function of inner hair cell ribbon synapses[J]. Cell Tissue Res, 2015, 361(1): 95-114. doi:10.1007/s00441-014-2102-7 [13] Meyer AC, Frank T, Khimich D, et al. Tuning of synapse number, structure and function in the cochlea[J]. Nat Neurosci, 2009, 12(4): 444-453. doi:10.1038/nn.2293 [14] Sun SH, Siebald C, Müller U. Subtype maturation of spiral ganglion neurons[J]. Curr Opin Otolaryngol Head Neck Surg, 2021, 29(5): 391-399. doi:10.1097/MOO.0000000000000748 [15] Dhanasingh AE, Rajan G, van de Heyning P. Presence of the spiral ganglion cell bodies beyond the basal turn of the human cochlea[J]. Cochlear Implants Int, 2020, 21(3): 145-152. doi:10.1080/14670100.2019.1694226 [16] Flores EN, Duggan A, Madathany T, et al. A non-canonical pathway from cochlea to brain signals tissue-damaging noise[J]. Curr Biol, 2015, 25(5): 606-612. doi:10.1016/j.cub.2015.01.009 [17] 徐翀,王晓亭,易红良. 单细胞测序分析喉癌及其微环境代谢相关靶基因[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 33-38.doi: 10.6040/j.issn.1673-3770.0.2021.542 XU Chong, WANG Xiaoting, YI Hongliang. Single-cell sequencing analysis of laryngeal cancer and its microenvironmental metabolism-related target genes[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 33-38.doi: 10.6040/j.issn.1673-3770.0.2021.542 [18] Chen JY, Gao DK, Chen JM, et al. Single-cell RNA sequencing analysis reveals greater epithelial ridge cells degeneration during postnatal development of cochlea in rats[J]. Front Cell Dev Biol, 2021, 9: 719491. doi:10.3389/fcell.2021.719491 [19] Durruthy-Durruthy R, Heller S. Applications for single cell trajectory analysis in inner ear development and regeneration[J]. Cell Tissue Res, 2015, 361(1): 49-57. doi:10.1007/s00441-014-2079-2 [20] Xu ZH, Tu S, Pass C, et al. Profiling mouse cochlear cell maturation using 10 × Genomics single-cell transcriptomics[J]. Front Cell Neurosci, 2022, 16: 962106. doi:10.3389/fncel.2022.962106 [21] Amado N, Mathews J, Henry G, et al. mp44-09?understanding prune belly syndrome at single cell resolution[J]. J Urol, 2021, 206(Suppl 3): e796. doi:10.1097/JU.0000000000002065.09 [22] Nishimura K, Noda T, Dabdoub A. Dynamic expression of Sox2, Gata3, and Prox1 during primary auditory neuron development in the mammalian cochlea[J]. PLoS One, 2017, 12(1): e0170568. doi:10.1371/journal.pone.0170568 [23] Walters BJ, Coak E, Dearman J, et al. InVivo interplay between p27Kip1, GATA3, ATOH1, and POU4F3 converts non-sensory cells to hair cells in adult mice[J]. Cell Rep, 2017, 19(2): 307-320. doi:10.1016/j.celrep.2017.03.044 [24] Amma LL, Goodyear R, Faris JS, et al. An emilin family extracellular matrix protein identified in the cochlear basilar membrane[J]. Mol Cell Neurosci, 2003, 23(3): 460-472. doi:10.1016/s1044-7431(03)00075-7 [25] Crispino G, di Pasquale G, Scimemi P, et al. BAAV mediated GJB2 gene transfer restores gap junction coupling in cochlear organotypic cultures from deaf Cx26Sox10Cre mice[J]. PLoS One, 2011, 6(8): e23279. doi:10.1371/journal.pone.0023279 [26] Jin ZH, Kikuchi T, Tanaka K, et al. Expression of glutamate transporter GLAST in the developing mouse cochlea[J]. Tohoku J Exp Med, 2003, 200(3): 137-144. doi:10.1620/tjem.200.137 [27] Glowatzki E, Cheng N, Hiel H, et al. The glutamate-aspartate transporter GLAST mediates glutamate uptake at inner hair cell afferent synapses in the mammalian cochlea[J]. J Neurosci, 2006, 26(29): 7659-7664. doi:10.1523/JNEUROSCI.1545-06.2006 [28] Udagawa T, Atkinson PJ, Milon B, et al. Lineage-tracing and translatomic analysis of damage-inducible mitotic cochlear progenitors identifies candidate genes regulating regeneration[J]. PLoS Biol, 2021, 19(11): e3001445. doi:10.1371/journal.pbio.3001445 [29] Self T, Sobe T, Copeland NG, et al. Role of myosin VI in the differentiation of cochlear hair cells[J]. Dev Biol, 1999, 214(2): 331-341. doi:10.1006/dbio.1999.9424 [30] Zheng J, Shen W, He DZ, et al. Prestin is the motor protein of cochlear outer hair cells[J]. Nature, 2000, 405(6783): 149-155. doi:10.1038/35012009 [31] Simmons DD, Tong B, Schrader AD, et al. Oncomodulin identifies different hair cell types in the mammalian inner ear[J]. J Comp Neurol, 2010, 518(18): 3785-3802. doi:10.1002/cne.22424 [32] Peters LM, Belyantseva IA, Lagziel A, et al. Signatures from tissue-specific MPSS libraries identify transcripts preferentially expressed in the mouse inner ear[J]. Genomics, 2007, 89(2): 197-206. doi:10.1016/j.ygeno.2006.09.006 [33] Kaur T, Zamani D, Tong L, et al. Fractalkine signaling regulates macrophage recruitment into the cochlea and promotes the survival of spiral ganglion neurons after selective hair cell lesion[J]. J Neurosci, 2015, 35(45): 15050-15061. doi:10.1523/JNEUROSCI.2325-15.2015 [34] Rai V, Wood MB, Feng H, et al. The immune response after noise damage in the cochlea is characterized by a heterogeneous mix of adaptive and innate immune cells[J]. Sci Rep, 2020, 10(1): 15167. doi:10.1038/s41598-020-72181-6 [35] Milon B, Shulman ED, So KS, et al. A cell-type-specific atlas of the inner ear transcriptional response to acoustic trauma[J]. Cell Rep, 2021, 36(13): 109758. doi:10.1016/j.celrep.2021.109758 [36] Barclay M, Ryan AF, Housley GD. Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development[J]. Neural Dev, 2011, 6: 33. doi:10.1186/1749-8104-6-33 [37] Locher H, Frijns JH, van Iperen L, et al. Neurosensory development and cell fate determination in the human cochlea[J]. Neural Dev, 2013, 8: 20. doi:10.1186/1749-8104-8-20 [38] Tian C, Johnson KR. TBX1 is required for normal stria vascularis and semicircular canal development[J]. Dev Biol, 2020, 457(1): 91-103. doi:10.1016/j.ydbio.2019.09.013 [39] Wan GQ, Corfas G. Transient auditory nerve demyelination as a new mechanism for hidden hearing loss[J]. Nat Commun, 2017, 8: 14487. doi:10.1038/ncomms14487 [40] Roux I, Safieddine S, Nouvian R, et al. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse[J]. Cell, 2006, 127(2): 277-289. doi:10.1016/j.cell.2006.08.040 [41] Roux I, Hosie S, Johnson SL, et al. Myosin VI is required for the proper maturation and function of inner hair cell ribbon synapses[J]. Hum Mol Genet, 2009, 18(23): 4615-4628. doi:10.1093/hmg/ddp429 [42] Seal RP, Akil O, Yi E, et al. Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3[J]. Neuron, 2008, 57(2): 263-275. doi:10.1016/j.neuron.2007.11.032 [43] Fritzsch B, Fariñas I, Reichardt LF. Lack of neurotrophin 3 causes losses of both classes of spiral ganglion neurons in the cochlea in a region-specific fashion[J]. J Neurosci, 1997, 17(16): 6213-6225. doi:10.1523/JNEUROSCI.17-16-06213.1997 [44] Mukherjee S, Kuroiwa M, Oakden W, et al. Local magnetic delivery of adeno-associated virus AAV2(quad Y-F)-mediated BDNF gene therapy restores hearing after noise injury[J]. Mol Ther, 2022, 30(2): 519-533. doi:10.1016/j.ymthe.2021.07.013 [45] Fritzsch B, Silos-Santiago I, Bianchi LM, et al. The role of neurotrophic factors in regulating the development of inner ear innervation[J]. Trends Neurosci, 1997, 20(4): 159-164. doi:10.1016/s0166-2236(96)01007-7 [46] Fritzsch B, Tessarollo L, Coppola E, et al. Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance[J]. Prog Brain Res, 2004, 146: 265-278. doi:10.1016/S0079-6123(03)46017-2 [47] Ramekers D, Versnel H, Grolman W, et al. Neurotrophins and their role in the cochlea[J]. Hear Res, 2012, 288(1/2): 19-33. doi:10.1016/j.heares.2012.03.002 [48] Bademci G, Abad C, Cengiz FB, et al. Long-range cis-regulatory elements controlling GDF6 expression are essential for ear development[J]. J Clin Invest, 2020, 130(8): 4213-4217. doi:10.1172/JCI136951 [49] Katoh Y, Katoh M. Comparative integromics on BMP/GDF family[J]. Int J Mol Med, 2006, 17(5): 951-955 [50] Mazerbourg S, Hsueh AJW. Genomic analyses facilitate identification of receptors and signalling pathways for growth differentiation factor 9 and related orphan bone morphogenetic protein/growth differentiation factor ligands[J]. Hum Reprod Update, 2006, 12(4): 373-383. doi:10.1093/humupd/dml014 [51] Petitpré C, Faure L, Uhl P, et al. Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification[J]. Nat Commun, 2022, 13(1): 3878. doi:10.1038/s41467-022-31580-1 [52] Sakagami M. Role of osteopontin in the rodent inner ear as revealed by in situ hybridization[J]. Med Electron Microsc, 2000, 33(1): 3-10. doi:10.1007/s007950000001 [53] Davis RL, Lopez CA, Mou K. Expression of osteopontin in the inner ear[J]. Ann N Y Acad Sci, 1995, 760: 279-295. doi:10.1111/j.1749-6632.1995.tb44638.x [54] Takemura T, Sakagami M, Nakase T, et al. Localization of osteopontin in the otoconial organs of adult rats[J]. Hear Res, 1994, 79(1/2): 99-104. doi:10.1016/0378-5955(94)90131-7 [55] Schmitt NC, Rubel EW. Osteopontin does not mitigate cisplatin ototoxicity or nephrotoxicity in adult mice[J]. Otolaryngol Head Neck Surg, 2013, 149(4): 614-620. doi:10.1177/0194599813498218 [56] Lopez CA, Olson ES, Adams JC, et al. Osteopontin expression detected in adult cochleae and inner ear fluids[J]. Hear Res, 1995, 85(1/2): 210-222. doi:10.1016/0378-5955(95)00046-7 [57] Li GM, Liu W, Frenz D. Cisplatin ototoxicity to the rat inner ear: a role for HMG1 and iNOS[J]. Neurotoxicology, 2006, 27(1): 22-30. doi:10.1016/j.neuro.2005.05.010 [58] Mostafa DG, Satti HH, Khaleel EF, et al. A high-fat diet rich in corn oil exaggerates the infarct size and memory impairment in rats with cerebral ischemia and is associated with suppressing osteopontin and Akt, and activating GS3Kβ, iNOS, and NF-κB[J]. J Physiol Biochem, 2020, 76(3): 393-406. doi:10.1007/s13105-020-00744-2 [59] de Schepper S, Ge JZ, Crowley G, et al. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer's disease[J]. Nat Neurosci, 2023, 26(3): 406-415. doi:10.1038/s41593-023-01257-z [60] 李聪,李玲,刘亭彦, 等. 氨基糖苷类抗生素耳毒性影响因素研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 128-134. doi: 10.6040/j.issn.1673-3770.0.2021.097 LI Cong, LI Ling, LIU Tingyan, et al. Research progress on influencing factors of aminoglycoside antibiotic ototoxicity[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 128-134. doi: 10.6040/j.issn.1673-3770.0.2021.097 [61] Evans AJ, Thompson BC, Wallace GG, et al. Promoting neurite outgrowth from spiral ganglion neuron explants using polypyrrole/BDNF-coated electrodes[J]. J Biomed Mater Res A, 2009, 91(1): 241-250. doi:10.1002/jbm.a.32228 [62] Gillespie LN, Clark GM, Marzella PL. Delayed neurotrophin treatment supports auditory neuron survival in deaf guinea pigs[J]. Neuroreport, 2004, 15(7): 1121-1125. doi:10.1097/00001756-200405190-00008 [63] Landry TG, Wise AK, Fallon JB, et al. Spiral ganglion neuron survival and function in the deafened cochlea following chronic neurotrophic treatment[J]. Hear Res, 2011, 282(1/2): 303-313. doi:10.1016/j.heares.2011.06.007 [64] Shepherd RK, Coco A, Epp SB. Neurotrophins and electrical stimulation for protection and repair of spiral ganglion neurons following sensorineural hearing loss[J]. Hear Res, 2008, 242(1/2): 100-109. doi:10.1016/j.heares.2007.12.005 [65] Glueckert R, Bitsche M, Miller JM, et al. Deafferentation-associated changes in afferent and efferent processes in the guinea pig cochlea and afferent regeneration with chronic intrascalar brain-derived neurotrophic factor and acidic fibroblast growth factor[J]. J Comp Neurol, 2008, 507(4): 1602-1621. doi:10.1002/cne.21619 [66] Leake PA, Hradek GT, Hetherington AM, et al. Brain-derived neurotrophic factor promotes cochlear spiral ganglion cell survival and function in deafened, developing cats[J]. J Comp Neurol, 2011, 519(8): 1526-1545. doi:10.1002/cne.22582 [67] Gunewardene N, Ma YT, Lam P, et al. Developing the supraparticle technology for round window-mediated drug administration into the cochlea[J]. J Control Release, 2023, 361: 621-635. doi:10.1016/j.jconrel.2023.08.016 [68] Wang CS, Kavalali ET, Monteggia LM. BDNF signaling in context: from synaptic regulation to psychiatric disorders[J]. Cell, 2022, 185(1): 62-76. doi:10.1016/j.cell.2021.12.003 [69] Ma JY, You D, Li WY, et al. Bone morphogenetic proteins and inner ear development[J]. J Zhejiang Univ Sci B, 2019, 20(2): 131-145. doi:10.1631/jzus.B1800084 [70] Sun L, Ping L, Gao RZ, et al. lmo4a contributes to zebrafish inner ear and vestibular development via regulation of the bmp pathway[J]. Genes, 2023, 14(7): 1371. doi:10.3390/genes14071371 [71] Waqas M, Sun S, Xuan CY, et al. Bone morphogenetic protein 4 promotes the survival and preserves the structure of flow-sorted Bhlhb5+ cochlear spiral ganglion neurons in vitro[J]. Sci Rep, 2017, 7(1): 3506. doi:10.1038/s41598-017-03810-w |
| [1] | 陈铭,柯冰冰,崔雅琦,吴翠萍,陈正侬,李春燕,殷善开. NAD+对顺铂所致毛细胞氧化应激损伤的拮抗作用及相关基因表达调控[J]. 山东大学耳鼻喉眼学报, 2025, 39(3): 11-18. |
| [2] | 李钰,刘皓,王敏,付小龙,李文. mTOR通路在耳蜗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(5): 112-118. |
| [3] | 周静,毕秀丽,肖雨,胡俊,付小龙,于亚峰. 盐酸氯米帕明保护听觉毛细胞免受新霉素诱导的损伤[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 22-27. |
| [4] | 吴彬,周敬淳. 单细胞测序分析喉鳞状细胞癌细胞RPN2表达模式[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 1-11. |
| [5] | 徐翀,王晓亭,易红良. 单细胞测序分析喉癌及其微环境代谢相关靶基因[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 33-38. |
| [6] | 杨琨, 陈利娟, 何小丹, 刘志奇, 沙素华. 卡那霉素和2-羟丙基-β-环糊精耳毒性的比较研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 6-11. |
| [7] | 李祯,崔丽梅,孙岩. 骨形态发生蛋白4在内耳发育及在毛细胞与螺旋神经节细胞再生中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 108-112. |
| [8] | 张旭平,刘雪霞,张华. 外泌体在变态反应性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 136-140. |
| [9] | 李姝娜1,马永明1,钱炜1,Vincent Lin2. 离体培养时Wnt3a对椭圆囊毛细胞再生的影响[J]. 山东大学耳鼻喉眼学报, 2013, 27(5): 28-31. |
| [10] | 张莹莹,梁耕田,刘莉,卢岭,刘金炎. 骨髓神经组织定向干细胞移植修复听神经损伤模型大鼠的实验研究[J]. 山东大学耳鼻喉眼学报, 2013, 27(5): 32-36. |
| [11] | 杨霞,高下. 内耳细胞骨架相关蛋白及其基因突变致遗传性耳聋[J]. 山东大学耳鼻喉眼学报, 2012, 26(1): 80-84. |
| [12] | 李姝娜,王晓宇,姜学钧 . 离体培养时bFGF对顺铂耳蜗毒性的拮抗作用[J]. 山东大学耳鼻喉眼学报, 2007, 21(5): 423-426 . |
|
||