山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (3): 1-11.doi: 10.6040/j.issn.1673-3770.0.2023.497

• 论著 •    

单细胞测序分析喉鳞状细胞癌细胞RPN2表达模式

吴彬,周敬淳   

  1. 暨南大学第二临床医学院 耳鼻咽喉科, 广东 深圳 518020
  • 发布日期:2024-06-04
  • 通讯作者: 周敬淳. E-mail:szhospial@hotmail.com

Single cell sequencing analysis of RPN2 expression pattern in laryngeal squamous cell carcinoma cells

WU Bin, ZHOU Jingchun   

  1. Department of Otorhinolaryngology, the Second Clinical College of Jinan University, Shenzhen 518020, Guangdong, China
  • Published:2024-06-04

摘要: 目的 探讨核糖体结合糖蛋白Ⅱ(ribophorin Ⅱ, RPN2)在喉鳞状细胞癌单细胞微环境中的表达模式。 方法 通过获取并预处理GSE150321的喉鳞癌单细胞数据集,应用降维和分群算法对细胞类型进行分类和定义,并对各细胞类型中的RPN2表达进行概览和分析。筛选出RPN2阳性和RPN2阴性肿瘤细胞的差异表达基因,进行功能富集分析,构建RPN2阳性和RPN2阴性肿瘤细胞的细胞互作网络。 结果 喉鳞状细胞癌细胞经单细胞测序后,根据细胞的标记分子将细胞分为肿瘤细胞、免疫细胞、成纤维细胞、内皮细胞和上皮细胞等亚群。RPN2在肿瘤细胞和免疫细胞中的表达水平相对较高,而在内皮细胞、成纤维细胞和上皮细胞中的表达水平相对较低。差异表达分析筛选出与RPN2表达相关的基因,功能富集分析结果显示RPN2阳性肿瘤细胞高表达基因主要富集在核糖核蛋白复合体的生物发生和胞质翻译等信号通路中。构建的细胞互作网络显示RPN2阳性肿瘤细胞与成纤维细胞、内皮细胞和免疫细胞之间存在较强的互作关系。 结论 本研究揭示了RPN2在喉鳞状细胞癌微环境中的表达模式,以及RPN2阳性和RPN2阴性肿瘤细胞的特征及其与肿瘤发病、发展、预后之间的关联。这些发现为喉鳞状细胞癌的治疗和进一步研究提供了理论依据。

关键词: 喉鳞状细胞癌, 单细胞测序, 核糖体结合糖蛋白Ⅱ, 微环境, 细胞互作网络

Abstract: Objective This study aims to explore the expression pattern of RPN2 in the microenvironment of laryngeal squamous cell carcinoma at the single-cell level. Methods By acquiring and preprocessing the GSE150321 dataset of laryngeal squamous cell carcinoma single-cell data, dimensionality reduction and clustering algorithms were applied to classify and define cell types, followed by an overview and analysis of RPN2 expression in each cell type. Differential expression genes between RPN2-positive and RPN2-negative tumor cells were screened and subjected to functional enrichment analysis. A cell-cell interaction network was constructed for RPN2-positive and RPN2-negative tumor cells. Results After single-cell sequencing of laryngeal squamous cell carcinoma cells, cells were classified into subgroups such as tumor cells, immune cells, fibroblasts, endothelial cells, and epithelial cells based on cell marker molecules. RPN2 showed relatively higher expression levels in tumor cells and immune cells, while lower expression levels were observed in endothelial cells, fibroblasts, and epithelial cells. Differential expression analysis identified genes associated with RPN2 expression, and functional enrichment analysis revealed that highly expressed genes in RPN2-positive tumor cells were mainly enriched in biological processes such as ribonucleoprotein complex biogenesis and cytoplasmic translation signaling pathways. The constructed cell-cell interaction network demonstrated strong interactions between RPN2-positive tumor cells and fibroblasts, endothelial cells, and immune cells. Conclusion This study reveals the expression pattern of RPN2 in the microenvironment of laryngeal squamous cell carcinoma and the characteristics of RPN2-positive and RPN2-negative tumor cells, as well as their associations with tumor occurrence, development, and prognosis. These findings provide a theoretical basis for the treatment and further research of laryngeal squamous cell carcinoma.

Key words: Laryngeal squamous cell carcinoma, Single-cell sequencing, RibophorinⅡ, Microenvironment, Cell interactome network

中图分类号: 

  • R767.19
[1] 周一静, 邹建银, 易红良, 等. TGFBI在头颈部鳞状细胞癌中的表达及其临床意义[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 85-95. doi:10.6040/j.issn.1673-3770.0.2022.459 ZHOU Yijing, ZOU Jianyin, YI Hongliang, et al. Expression of TGFBI in head and neck squamous cell carcinoma and its clinical significance[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 85-95. doi:10.6040/j.issn.1673-3770.0.2022.459
[2] Song H, Lou C, Ma J, et al. Single-cell transcriptome analysis reveals changes of tumor immune microenvironment in oral squamous cell carcinoma after chemotherapy[J]. Front Cell Dev Biol, 2022, 10: 914120. doi:10.3389/fcell.2022.914120
[3] Verga Samuel A. Comparative analysis of breast cancer stem-like cells and the bulk tumor through whole transcriptome sequencing and expression analysis[D]. Indiana: Indiana State University, 2016
[4] Zhou JC, Zhang JJ, Zhang W, et al. Ribophorin Ⅱ promotes the epithelial-mesenchymal transition and aerobic glycolysis of laryngeal squamous cell carcinoma via regulating reactive oxygen species-mediated phosphatidylinositol-3-kinase/protein kinase b activation[J]. Bioengineered, 2022, 13(3): 5141-5151. doi:10.1080/21655979.2022.2036914
[5] 李亚楠, 梁辉. 人乳头瘤病毒相关口咽鳞状细胞癌发生机制的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 104-110. doi:10.6040/j.issn.1673-3770.0.2022.172 LI Yanan, LIANG Hui. Study progress on the mechanism of human papillomavirus-related oropharyngeal squamous cell carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 104-110. doi:10.6040/j.issn.1673-3770.0.2022.172
[6] Li H, Pan LJ, Guo JY, et al. Integration of single-cell and bulk RNA sequencing to establish a prognostic signature based on tumor-associated macrophages in colorectal cancer[J]. BMC Gastroenterol, 2023, 23(1): 385. doi:10.1186/s12876-023-03035-4
[7] 李智林, 郑洲, 安韡. 12例原发性甲状腺鳞状细胞癌的临床及生存分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 59-63. doi:10.6040/j.issn.1673-3770.0.2021.439 LI Zhilin, ZHENG Zhou, AN Wei. Clinical and survival analysis of primary squamous cell carcinoma of the thyroid 12 cases[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(1): 59-63. doi:10.6040/j.issn.1673-3770.0.2021.439
[8] 刘玉东, 甄娟, 韩晓丽, 等. MTA2、HIF-1α和E-cadherin在喉鳞状细胞癌组织及转染MTA2 siRNA喉癌细胞中的表达观察[J]. 山东医药, 2020, 60(6): 40-44 LIU Yudong, ZHEN Juan, HAN Xiaoli, et al. Expression of MTA2, HIF-1α, and E-cadherin cadherin in laryngeal squamous cell carcinoma tissues and laryngeal carcinoma cells transfected with MTA2 siRNA[J]. Shandong Medical Journal, 2020, 60(6): 40-44
[9] 赵谦, 白艳霞, 张少强, 等. N-myc下游调控基因2蛋白在喉鳞状细胞癌中的表达及对人喉表皮样癌细胞生物学特性的影响[J]. 安徽医药, 2020, 24(10): 1933-1937. doi:10.3969/j.issn.1009?6469.2020.10.005 ZHAO Qian, BAI Yanxia, ZHANG Shaoqiang, et al. Expression of NDRG2 in laryngeal squamous cell carcinoma and its effects on cellbiological character of Hep-2 cells[J]. Anhui Medical and Pharmaceutical Journal, 2020, 24(10): 1933-1937. doi:10.3969/j.issn.1009-6469.2020.10.005
[10] 车娟, 张肖林, 徐舒舒, 等. 喉鳞癌组织中OPN、VEGF、MMP-9蛋白表达变化及意义[J]. 山东医药, 2019, 59(13): 11-14. doi:10.3969/j.issn.1002-266X.2019.13.003 CHE Juan, ZHANG Xiaolin, XU Shushu, et al. Changes in expression of OPN, VEGF, and MMP-9 proteins in laryngeal squamous cell carcinoma[J]. Shandong Medical Journal, 2019, 59(13): 11-14. doi:10.3969/j.issn.1002-266X.2019.13.003
[11] Yang L, Zhang XY, Hou Q, et al. Single-cell RNA-seq of esophageal squamous cell carcinoma cell line with fractionated irradiation reveals radioresistant gene expression patterns[J]. BMC Genomics, 2019, 20(1): 611. doi:10.1186/s12864-019-5970-0
[12] 要兆旭. WAVE2在消化道喉鳞状细胞癌组织中的表达及临床意义[J]. 现代消化及介入诊疗, 2018, 23(12):1
[13] 杨明, 宋杨, 张红健, 等. IL-17调控PI3K/AKT/FAS/FASL信号通路抑制Hep-2细胞凋亡[J]. 安徽医科大学学报, 2018, 53(11): 1681-1684. doi:10.19405/j.cnki.issn1000-1492.2018.11.006 YANG Ming, SONG Yang, ZHANG Hongjian, et al. IL-17 inhibits apoptosis of Hep-2 cell lines through modulating PI3K/AKT/FAS/FASL signaling pathway[J]. Acta Universitatis Medicinalis Anhui, 2018, 53(11): 1681-1684. doi:10.19405/j.cnki.issn1000-1492.2018.11.006
[14] Wang LF, Xing XL, Tian H, et al. Actin-like protein 8, a member of cancer/testis antigens, supports the aggressive development of oral squamous cell carcinoma cells via activating cell cycle signaling[J]. Tissue Cell, 2022, 75: 101708. doi:10.1016/j.tice.2021.101708
[15] 胡雪刚. 口腔鳞状细胞癌非编码RNA表达谱研究及潜在分子标志物筛选[D]. 福州: 福建医科大学, 2018
[16] Vujanovic L, Kulkarni A, Cornelius Kürten, et al. Assessment of the immune checkpoint landscape in head and neck squamous cell carcinoma by single-cell RNA sequencing and multispectral imaging[J]. Journal for ImmunoTherapy of Cancer, 2020. doi:10.1136/JITC-2020-SITC2020.0756
[17] 姚芝芬, 于明, 朱颖, 等. 接头蛋白CrkⅡ在喉鳞状细胞癌组织中的表达及临床意义[J]. 重庆医学, 2018, 47(28): 3719-3720. doi:10.3969/j.issn.1671-8348.2018.28.034
[18] 王晓辉, 沙树奎, 闫嘉俊, 等. 血管内皮生长因子及基质金属蛋白酶在喉鳞状细胞癌病人临床诊断及预后判断中的意义分析[J]. 安徽医药, 2021, 25(4): 793-796 WANG Xiaohui, SHA Shukui, YAN Jiajun, et al. The value of vascular endothelial growth factor and matrix metalloproteinases in the clinical diagnosis and prognosis of patients with laryngeal squamous carcinoma[J]. Anhui Medical and Pharmaceutical Journal, 2021, 25(4): 793-796
[19] Li L, Shi W, Liu M, et al. Single-cell secretion analysis in the engineered tumor microenvironment reveals differential modulation of macrophage immune responses[J]. Analytical Chemistry, 2021, 93(9):4198-4207. doi:10.1021/acs.analchem.0c04604
[20] 卫亚楠, 陈曦. 局部晚期头颈部鳞状细胞癌的化疗及靶向进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(3):118-124. doi:10.6040/j.issn.1673-3770.0.2020.276 WEI Yanan, CHEN Xi. Progress in chemotherapy and targeted drug therapy for locally advanced head and neck squamous cell carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(3): 118-124. doi:10.6040/j.issn.1673-3770.0.2020.276
[21] Wu HJ, Yu JH, Kong D, et al. Population and single-cell transcriptome analyses reveal diverse transcriptional changes associated with radioresistance in esophageal squamous cell carcinoma[J]. Int J Oncol, 2019, 55:1237-1248. doi:10.3892/ijo.2019.4897
[22] 瞿浩, 高阳. SIRT6和EHD2因子在喉鳞状细胞癌组织中的表达及其临床意义[J]. 医药(中国科技期刊数据库), 2022(2): 9-13 QU Hao,GAO Yang.Expression of SIRT6 and EHD2 factors in larysquamous cell carcinoma and their clinical signiificance[J]. Medicine(China Science and Technology Journal Database), 2022(2): 9-13
[23] 邹良玉, 李连贺, 岳文慧, 等. MIF、GSK-3β在喉鳞状细胞癌中表达的临床意义及相关性研究[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 76-80. doi:10.6040/j.issn.1673-3770.0.2018.423 ZOU Liangyu, LI Lianhe, YUE Wenhui, et al. Clinical significance and correlation between MIF and GSK-3β expression in laryngeal squamous cell carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 76-80. doi:10.6040/j.issn.1673-3770.0.2018.423
[24] Shen KY, Chen BY, Gao WC. Integrated single-cell RNA sequencing analysis reveals a mesenchymal stem cell-associated signature for estimating prognosis and drug sensitivity in gastric cancer[J]. J Cancer Res Clin Oncol, 2023, 149(13): 11829-11847. doi:10.1007/s00432-023-05058-6
[25] 魏炜, 武月章, 陈冬冬, 等. 喉鳞状细胞癌组织中朊蛋白分子特征的分析[J]. 疾病监测, 2022, 37(2): 176-179. doi:10.3784/jbjc.202105280296 WEI Wei, WU Yuezhang, CHEN Dongdong, et al. Prion protein molecular characteristics in laryngeal squamous cell carcinoma[J]. Disease Surveillance, 2022, 37(2): 176-179. doi:10.3784/jbjc.202105280296
[26] 刘勇, 袁存立, 曹慧, 等. CHD1L通过EMT促进喉鳞状细胞癌细胞的增殖、侵袭和转移[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 32-39. doi:10.6040/j.issn.1673-3770.0.2021.119 LIU Yong, YUAN Cunli, CAO Hui, et al. CHD1L promotes proliferation, invasion and metastasis of laryngeal squamous cell carcinoma cells by EMT[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 32-39. doi:10.6040/j.issn.1673-3770.0.2021.119
[27] Guo ZC, Jumatai S, Jing SL, et al. Bioinformatics and immunohistochemistry analyses of expression levels and clinical significance of CXCL2 and TANs in an oral squamous cell carcinoma tumor microenvironment of Prophyromonas gingivalis infection[J]. Oncol Lett, 2021, 21(3): 189. doi:10.3892/ol.2021.12450
[28] 朱虹, 左文娜, 金爱燕, 等. 喉鳞状细胞癌患者血清及唾液中基质金属蛋白酶-2基质金属蛋白酶-9的水平与肿瘤恶性程度的相关性分析[J]. 中国药物与临床, 2021, 21(6): 945-947. doi:10.11655/zgywylc2021.06.019
[29] Lyu KX, Li Y, Xu Y, et al. Using RNA sequencing to identify a putative lncRNA-associated ceRNA network in laryngeal squamous cell carcinoma[J]. RNA Biol, 2020, 17(7): 977-989. doi:10.1080/15476286.2020.1741282
[30] Wang HS, Xia Y, Yu JM, et al. Expression of New York esophageal squamous cell carcinoma 1 and its association with Foxp3 and indoleamine-2, 3-dioxygenase in microenvironment of nonsmall cell lung cancer[J]. HLA, 2019, 94(1): 39-48. doi:10.1111/tan.13547
[31] 王晶田, 赵岩, 刘胜辉, 等. lncRNA DNM3OS在喉鳞状细胞癌组织和细胞中的表达及其临床和生物学意义[J]. 中国肿瘤生物治疗杂志, 2021, 28(12): 1160-1167. doi:10.3872/j.issn.1007-385x.2021.12.002 WANG Jingtian, ZHAO Yan, LIU Shenghui, et al. Expression of lncRNA DNM3OS in laryngeal squamous cell carcinoma tissues and cells and its clinical and biological significance[J]. Chinese Journal of Cancer Biotherapy, 2021, 28(12): 1160-1167. doi:10.3872/j.issn.1007-385x.2021.12.002
[32] 徐翀, 王晓亭, 易红良. 单细胞测序分析喉癌及其微环境代谢相关靶基因[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 33-38. doi:10.6040/j.issn.1673-3770.0.2021.542 XU Chong, WANG Xiaoting, YI Hongliang. Single-cell sequencing analysis of laryngeal cancer and its microenvironmental metabolism-related target genes[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 33-38. doi:10.6040/j.issn.1673-3770.0.2021.542
[1] 宋斐,宋昊,李玉梅,牟亚魁,宋西成. 肿瘤源性外泌体在头颈鳞状细胞癌微环境中的免疫调节作用[J]. 山东大学耳鼻喉眼学报, 2024, 38(1): 92-100.
[2] 张永红,张辉,王彩华,杨欣欣,吴允刚,赵玉凤,庞太忠,李晓瑜. 基于TCGA数据库构建喉鳞状细胞癌免疫相关基因预后模型及筛选靶向分子药物[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 54-62.
[3] 李亚楠,梁辉. 人乳头瘤病毒相关口咽鳞状细胞癌发生机制的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 104-110.
[4] 徐翀,王晓亭,易红良. 单细胞测序分析喉癌及其微环境代谢相关靶基因[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 33-38.
[5] 刘通,林玮,冯萌,杨依,刘婷婷,张敏. 基于网络药理学分析小檗碱在免疫微环境中对糖尿病视网膜病变的作用及实验验证[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 94-104.
[6] 宋晴 宋西成. 安罗替尼联合治疗在肿瘤治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 106-112.
[7] 刘勇,袁存立,曹慧,郑成彩,晁方, 许风雷. CHD1L通过EMT促进喉鳞状细胞癌细胞的增殖、侵袭和转移[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 32-39.
[8] 范义燕,张肖林,刘秀珍,尹晶晶,袁进,王延飞,陈军. CPS1在喉鳞癌组织中的表达及临床意义[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 72-76.
[9] 陈慧君,宋圣花,董伟达,周涵. 术前外周血纤维蛋白原水平对喉癌预后的影响[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 110-114.
[10] 朱晓城,钱晓云,顾亚军,沈晓辉,宋盼盼,李惠,高下. MGMT和EGFR蛋白在喉鳞状细胞癌中的表达及临床意义[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 68-72.
[11] 安永明,穆文利,田艳勋,李伟,吴彦桥. 喉鳞癌组织中抑癌基因Maspin和转录因子Ets1的表达及意义[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 91-94.
[12] 李富, 赵书佑. 肺癌肿瘤抑制因子-1在喉鳞癌组织中的表达及其意义[J]. 山东大学耳鼻喉眼学报, 2015, 29(6): 36-38.
[13] 徐鸥1,2,李晓明1. 纠正肿瘤微环境乏氧相关方法研究进展[J]. 山东大学耳鼻喉眼学报, 2012, 26(6): 71-74.
[14] 许海艳1,彭解人1,区永康1,张琼霞2,张存良1,汤智平1,关中1. 喉癌组织中核表皮生长因子受体与Aurora-A激酶的表达及其临床意义[J]. 山东大学耳鼻喉眼学报, 2012, 26(5): 16-21.
[15] 吴桂卿1,田军2,孙静1,陈琪1. Tiam1和MTA1在喉鳞癌组织中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2012, 26(1): 41-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!