山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (4): 93-99.doi: 10.6040/j.issn.1673-3770.0.2024.499

• 研究进展 • 上一篇    下一篇

鼻内疫苗在鼻咽相关淋巴组织中的免疫机制及临床应用

符丽君,王海洋,王禹淇,邹宇豪,邹剑   

  1. 四川大学华西医院 耳鼻咽喉头颈外科, 四川 成都 610044
  • 出版日期:2025-07-20 发布日期:2025-08-11
  • 通讯作者: 邹剑. E-mail:zoujian@wchscu.cn
  • 基金资助:
    四川省科技厅(23QCYCX0115)

Immune mechanism and clinical application of the intranasal vaccine in nasopharyngeal-associated lymphoid tissues

FU Lijun, WANG Haiyang, WANG Yuqi, ZOU Yuhao, ZOU Jian   

  1. Department of Otorhinolaryngology & Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu 610044, Sichuan,  China
  • Online:2025-07-20 Published:2025-08-11

摘要: 鼻内疫苗通过作用于鼻咽相关淋巴组织诱导局部黏膜和系统性免疫反应,用于预防呼吸道感染性疾病,并展现出治疗脑部和自身免疫性疾病的潜力。鼻内疫苗结合新型佐剂和递送系统能显著提升抗原免疫原性,已在流感和新冠病毒等疾病预防中取得初步成果。而扁桃体类器官作为一种新兴的三维实验模型,能够精准模拟免疫微环境,为疫苗评估与设计优化提供了新工具。本文综述鼻内疫苗在临床应用中的研究进展,并分析新型佐剂、递送系统及扁桃体类器官在其优化中的作用,以期为未来鼻内疫苗的开发和应用提供理论支持。

关键词: 鼻咽相关淋巴组织, 鼻内疫苗, 佐剂, 药物递送体系, 扁桃体类器官

Abstract: Intranasal vaccines are used to prevent respiratory infectious diseases by inducing local mucosal and systemic immune responses through action on nasopharyngeal-associated lymphoid tissue and have demonstrated potential for the treatment of brain and autoimmune diseases. Intranasal vaccines combined with new adjuvants and delivery systems can significantly enhance antigen immunogenicity and have shown initial results in the prevention of diseases such as influenza and new coronaviruses. On the contrary, tonsil-like organs, as an emerging three-dimensional experimental model, can accurately mimic the immune microenvironment and provide new tools for vaccine evaluation and design optimization. This article reviews the progress of intranasal vaccine research in clinical applications and analyzes the role of novel adjuvants, delivery systems, and tonsil-like organs in their optimization, with the aim of providing theoretical support for the development and application of intranasal vaccines in the future.

Key words: Nasopharyngeal-related lymphoid tissue, Intranasal vaccine, Adjuvant, Drug delivery system, Tonsil organoids

中图分类号: 

  • R392.3
[1] Padayachee Y, Flicker S, Linton S, et al. Review: the nose as a route for therapy. part 2 immunotherapy[J]. Front Allergy, 2021, 2: 668781. doi:10.3389/falgy.2021.668781
[2] Bernasconi V, Norling K, Bally M, et al. Mucosal vaccine development based on liposome technology[J]. J Immunol Res, 2016, 2016: 5482087. doi:10.1155/2016/5482087
[3] Torika N, Asraf K, Cohen H, et al. Intranasal telmisartan ameliorates brain pathology in five familial Alzheimer's disease mice[J]. Brain Behav Immun, 2017, 64: 80-90. doi:10.1016/j.bbi.2017.04.001
[4] Lycke N. Recent progress in mucosal vaccine development: potential and limitations[J]. Nat Rev Immunol, 2012, 12(8): 592-605. doi:10.1038/nri3251
[5] Xu HY, Cai L, Hufnagel S, et al. Intranasal vaccine: Factors to consider in research and development[J]. Int J Pharm, 2021, 609: 121180. doi:10.1016/j.ijpharm.2021.121180
[6] Kastenschmidt JM, Sureshchandra S, Wagar LE. Leveraging human immune organoids for rational vaccine design[J]. Trends Immunol, 2023, 44(12): 938-944. doi:10.1016/j.it.2023.10.008
[7] Samara P, Athanasopoulos M, Athanasopoulos I. Unveiling the enigmatic adenoids and tonsils: exploring immunology, physiology, microbiome dynamics, and the transformative power of surgery[J]. Microorganisms, 2023, 11(7): 1624. doi:10.3390/microorganisms11071624
[8] Zhang Y, Garcia-Ibanez L, Toellner KM. Regulation of germinal center B-cell differentiation[J]. Immunol Rev, 2016, 270(1): 8-19. doi:10.1111/imr.12396
[9] Aljeraisi TM, Alomar SY, Mahallawi WH. BCG vaccine-induced mucosal humoral immunity in human nasal associated lymphoid tissue[J]. J King Saud Univ Sci, 2023, 35(6): 102773. doi:10.1016/j.jksus.2023.102773
[10] Sarmiento Varon L, De Rosa J, Machicote A, et al. Characterization of tonsillar IL10 secreting B cells and their role in the pathophysiology of tonsillar hypertrophy[J]. Sci Rep, 2017, 7(1): 11077. doi:10.1038/s41598-017-09689-x
[11] Vinuesa CG, Linterman MA, Yu D, et al. Follicular helper T cells[J]. Annu Rev Immunol, 2016, 34: 335-368. doi:10.1146/annurev-immunol-041015-055605
[12] Munguía-Fuentes R, Maqueda-Alfaro RA, Chacón-Salinas R, et al. Germinal center cells turning to the dark side: neoplasms of B cells, follicular helper T cells, and follicular dendritic cells[J]. Front Oncol, 2021, 10: 587809. doi:10.3389/fonc.2020.587809
[13] Crotty S. Follicular helper CD4 T cells(TFH)[J]. Annu Rev Immunol, 2011, 29: 621-663. doi:10.1146/annurev-immunol-031210-101400
[14] Brandtzaeg P. Potential of nasopharynx-associated lymphoid tissue for vaccine responses in the airways[J]. Am J Respir Crit Care Med, 2011, 183(12): 1595-1604. doi:10.1164/rccm.201011-1783OC
[15] Lycke NY, Bemark M. The regulation of gut mucosal IgA B-cell responses: recent developments[J]. Mucosal Immunol, 2017, 10(6): 1361-1374. doi:10.1038/mi.2017.62
[16] Kiyono H, Fukuyama S. NALT- versus Peyer's-patch-mediated mucosal immunity[J]. Nat Rev Immunol, 2004, 4(9): 699-710. doi:10.1038/nri1439
[17] Date Y, Ebisawa M, Fukuda S, et al. NALT M cells are important for immune induction for the common mucosal immune system[J]. Int Immunol, 2017, 29(10): 471-478. doi:10.1093/intimm/dxx064
[18] Ohno H. Intestinal M cells[J]. J Biochem, 2016, 159(2): 151-160. doi:10.1093/jb/mvv121
[19] Date Y, Ebisawa M, Fukuda S, et al. NALT M cells are important for immune induction for the common mucosal immune system[J]. Int Immunol, 2017, 29(10): 471-478. doi:10.1093/intimm/dxx064
[20] Kim SH, Jang YS. Antigen targeting to M cells for enhancing the efficacy of mucosal vaccines[J]. Exp Mol Med, 2014, 46(3): e85. doi:10.1038/emm.2013.165
[21] Dotiwala F, Upadhyay AK. Next generation mucosal vaccine strategy for respiratory pathogens[J]. Vaccines(Basel), 2023, 11(10): 1585. doi:10.3390/vaccines11101585
[22] Kok TW, Izzo AA, Costabile M. Intracellular immunoglobulin A(icIgA)in protective immunity and vaccines[J/OL]. Scand J Immunol, 2023, 97(4): e13253. doi:10.1111/sji.13253
[23] Matsumoto ML. Molecular mechanisms of multimeric assembly of IgM and IgA[J]. Annu Rev Immunol, 2022, 40(1): 221-247. doi:10.1146/annurev-immunol-101320-123742
[24] Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective-a review[J]. Drug Deliv Transl Res, 2013, 3(1): 42-62. doi:10.1007/s13346-012-0108-9
[25] Sonvico F, Colombo G, Quarta E, et al. Nasal delivery as a strategy for the prevention and treatment of COVID-19[J]. Expert Opin Drug Deliv, 2023, 20(8): 1115-1130. doi:10.1080/17425247.2023.2263363
[26] Yusuf H, Kett V. Current prospects and future challenges for nasal vaccine delivery[J]. Hum Vaccin Immunother, 2017, 13(1): 34-45. doi:10.1080/21645515.2016.1239668
[27] Burgess TH, Murray CK, Bavaro MF, et al. Self-administration of intranasal influenza vaccine: Immunogenicity and volunteer acceptance[J]. Vaccine, 2015, 33(32): 3894-3899. doi:10.1016/j.vaccine.2015.06.061
[28] Pedersen G, Cox R. The mucosal vaccine quandary: intranasal vs. sublingual immunization against influenza[J]. Hum Vaccin Immunother, 2012, 8(5): 689-693. doi:10.4161/hv.19568
[29] Vos A, Freuling CM, Hundt B, et al. Oral vaccination of wildlife against rabies: differences among host species in vaccine uptake efficiency[J]. Vaccine, 2017, 35(32): 3938-3944. doi:10.1016/j.vaccine.2017.06.022
[30] Shrewsbury SB. The upper nasal space: option for systemic drug delivery, mucosal vaccines and “nose-to-brain”[J]. Pharmaceutics, 2023, 15(6): 1720. doi:10.3390/pharmaceutics15061720
[31] Xu HY, Cai L, Hufnagel S, et al. Intranasal vaccine: Factors to consider in research and development[J]. Int J Pharm, 2021, 609: 121180. doi:10.1016/j.ijpharm.2021.121180
[32] Riese P, Sakthivel P, Trittel S, et al. Intranasal formulations: promising strategy to deliver vaccines[J]. Expert Opin Drug Deliv, 2014, 11(10): 1619-1634. doi:10.1517/17425247.2014.931936
[33] Jabbal-Gill I. Nasal vaccine innovation[J]. J Drug Target, 2010, 18(10): 771-786. doi:10.3109/1061186x.2010.523790
[34] 张佳璐, 张旋旋, 毛群颖, 等. 新型冠状病毒黏膜疫苗研究进展[J]. 中国病毒病杂志, 2023, 13(6): 419-427. doi:10.16505/j.2095-0136.2023.6003 ZHANG Jialu, ZHANG Xuanxuan, MAO Qunying, et al. Research progress on mucosal vaccines for SARS-CoV-2[J]. Chinese Journal of Viral Diseases, 2023, 13(6): 419-427. doi:10.16505/j.2095-0136.2023.6003
[35] Yuan MJ, Han ZY, Liang Y, et al. mRNA nanodelivery systems: targeting strategies and administration routes[J]. Biomater Res, 2023, 27(1): 90. doi:10.1186/s40824-023-00425-3
[36] Leal J, Smyth HDC, Ghosh D. Physicochemical properties of mucus and their impact on transmucosal drug delivery[J]. Int J Pharm, 2017, 532(1): 555-572. doi:10.1016/j.ijpharm.2017.09.018
[37] Zhang H, Liu ZZ, Lihe HY, et al. Intranasal G5-BGG/pDNA vaccine elicits protective systemic and mucosal immunity against SARS-CoV-2 by transfecting mucosal dendritic cells[J]. Adv Healthc Mater, 2024, 13(6): e2303261. doi:10.1002/adhm.202303261
[38] Park KS, Sun XQ, Aikins ME, et al. Non-viral COVID-19 vaccine delivery systems[J]. Adv Drug Deliv Rev, 2021, 169: 137-151. doi:10.1016/j.addr.2020.12.008
[39] Arnheim-Dahlstr m L, H llgren J, Weibull CE, et al. Risk of presentation to hospital with epileptic seizures after vaccination with monovalent AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine(Pandemrix): self controlled case series study[J]. BMJ, 2012, 345: e7594. doi:10.1136/bmj.e7594
[40] Jin Z, Gao S, Cui XL, et al. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines[J]. Int J Pharm, 2019, 572: 118731. doi:10.1016/j.ijpharm.2019.118731
[41] Lee SJ, Nguyen MT. Recent advances of vaccine adjuvants for infectious diseases[J]. Immune Netw, 2015, 15(2): 51-57. doi:10.4110/in.2015.15.2.51
[42] Overton ET, Goepfert PA, Cunningham P, et al. Intranasal seasonal influenza vaccine and a TLR-3 agonist, rintatolimod, induced cross-reactive IgA antibody formation against avian H5N1 and H7N9 influenza HA in humans[J]. Vaccine, 2014, 32(42): 5490-5495. doi:10.1016/j.vaccine.2014.07.078
[43] Jin Z, Gao S, Cui XL, et al. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines[J]. Int J Pharm, 2019, 572: 118731. doi:10.1016/j.ijpharm.2019.118731
[44] Wu XF, Li W, Rong H, et al. A nanoparticle vaccine displaying conserved epitopes of the preexisting neutralizing antibody confers broad protection against SARS-CoV-2 variants[J]. ACS Nano, 2024, 18(27): 17749-17763. doi:10.1021/acsnano.4c03075
[45] Dong CH, Zhu WD, Wei L, et al. Enhancing cross-protection against influenza by heterologous sequential immunization with mRNA LNP and protein nanoparticle vaccines[J]. Nat Commun, 2024, 15(1): 5800. doi:10.1038/s41467-024-50087-5
[46] Robert-Guroff M. Replicating and non-replicating viral vectors for vaccine development[J]. Curr Opin Biotechnol, 2007, 18(6): 546-556. doi:10.1016/j.copbio.2007.10.010
[47] Matsuda K, Migueles SA, Huang JH, et al. A replication-competent adenovirus-vectored influenza vaccine induces durable systemic and mucosal immunity[J]. J Clin Invest, 2021, 131(5): e140794. doi:10.1172/JCI140794
[48] Metz C, Haug V, Müller M, et al. Pharmacokinetic and environmental risk assessment of prime-2-CoV, a non-replicating orf virus-based vaccine against SARS-CoV-2[J]. Vaccines(Basel), 2024, 12(5): 492. doi:10.3390/vaccines12050492
[49] Lucy CF, John DC. Mucosal Immunology[M/OL]. Elsevier, 2015: 1183-1199[2023-12-22]. doi:10.1016/B978-0-12-415847-4.00061-6.
[50] Crothers JW, Norton EB. Recent advances in enterotoxin vaccine adjuvants[J]. Curr Opin Immunol, 2023, 85: 102398. doi:10.1016/j.coi.2023.102398
[51] Correa VA, Portilho AI, De Gaspari E. Vaccines, adjuvants and key factors for mucosal immune response[J]. Immunology, 2022, 167(2): 124-138. doi:10.1111/imm.13526
[52] Yin Q, Luo W, Mallajosyula V, et al. A TLR7-nanoparticle adjuvant promotes a broad immune response against heterologous strains of influenza and SARS-CoV-2[J]. Nat Mater, 2023, 22(3): 380-390. doi:10.1038/s41563-022-01464-2
[53] Leekha A, Saeedi A, Kumar M, et al. An intranasal nanoparticle STING agonist protects against respiratory viruses in animal models[J]. Nat Commun, 2024, 15(1): 6053. doi:10.1038/s41467-024-50234-y
[54] Kenter AL, Richner JM. Tonsil organoids: peering down the throat of human immunity[J]. Trends Immunol, 2021, 42(5): 367-368. doi:10.1016/j.it.2021.03.009
[55] Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, et al. Long-term expanding human airway organoids for disease modeling[J]. EMBO J, 2019, 38(4): e100300. doi:10.15252/embj.2018100300
[56] Kenter AL, Richner JM. Tonsil organoids: peering down the throat of human immunity[J]. Trends Immunol, 2021, 42(5): 367-368. doi:10.1016/j.it.2021.03.009
[57] Kastenschmidt JM, Sureshchandra S, Jain A, et al. Influenza vaccine format mediates distinct cellular and antibody responses in human immune organoids[J]. Immunity, 2023, 56(8): 1910-1926.e7. doi:10.1016/j.immuni.2023.06.019
[58] Wagar L. Small centers of defense[J]. Science, 2022, 375(6583): 830. doi:10.1126/science.abn9652
[59] Wagar LE, Salahudeen A, Constantz CM, et al. Modeling human adaptive immune responses with tonsil organoids[J]. Nat Med, 2021, 27(1): 125-135. doi:10.1038/s41591-020-01145-0
[60] Wagar LE. Human immune organoids: a tool to study vaccine responses[J]. Nat Rev Immunol, 2023, 23(11): 699. doi:10.1038/s41577-023-00956-9
[61] Takebe T, Zhang BY, Radisic M. Synergistic engineering: organoids meet organs-on-a-chip[J]. Cell Stem Cell, 2017, 21(3): 297-300. doi:10.1016/j.stem.2017.08.016
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨长亮,黄治物,姚行齐,诸勇,孙艺 . 正常气骨导听性脑干反应及其应用[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 9 -13 .
[2] 王红霞,王鹏程 . NSE、S100及GFAP在视网膜母细胞瘤中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 263 -264 .
[3] 黄 方,黄海琼,黄建强,何荷蕃 . 支气管内镜视频监视系统在小儿气管-支气管异物诊治中的应用[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 276 -277 .
[4] 于志良,王卫卫,王明华 . 耳鼻喉综合动力系统切除会厌囊肿23例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 278 -279 .
[5] 张剑利,王跃建,陈伟雄,胡维维,李广民 . 免疫组化和连续切片在检测头颈鳞癌颈淋巴结微转移中的意义[J]. 山东大学耳鼻喉眼学报, 2008, 22(4): 299 -303 .
[6] 王洪江,李培华,刘 稳 . 鼻咽部炎性肌纤维母细胞瘤1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2008, 22(4): 331 -332 .
[7] 刘凤安,陈宏杰,胡洪义,郑世信 . 人工耳蜗植入术后听觉言语效果的影响因素[J]. 山东大学耳鼻喉眼学报, 2008, 22(4): 333 -335 .
[8] 丁吉江,李永团,范洪江,薛卫国,郭朝斌 . 双侧鼻结石并鼻中隔穿孔1例[J]. 山东大学耳鼻喉眼学报, 2008, 22(4): 349 -349 .
[9] 陈凤华,马建民,王宁利,王津津 . 人Tenon′s囊成纤维细胞的离体培养及生长特性观察[J]. 山东大学耳鼻喉眼学报, 2008, 22(4): 350 -352 .
[10] 和守盰,陈 斌,殷善开,苏开明,姜 晓 . OSAHS患者UPPP手术前后上气道形态学变化[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 385 -388 .