Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2020, Vol. 34 ›› Issue (1): 110-114.doi: 10.6040/j.issn.1673-3770.0.2019.454

Previous Articles    

Molecular level detection of umbilical cord blood cells and pathogenesis of allergic diseases

RUI XiaoqingReview,LI YoujinGuidance   

  1. Department of Otolaryngology, Shanghai Children's Medical Center of Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
  • Published:2020-03-06

Abstract: Changes in immune status may be an early sign of subsequent allergic diseases in infants. Umbilical cord blood, as a reflection of early immune status, has become a hot research topic in the pathogenesis of allergic diseases. This article reviews the application value of umbilical cord blood at cellular and molecular level in the pathogenesis of allergic diseases.

Key words: Allergic disease, Umbilical cord blood, T cell subsets, DNA methylation, Vitamin D

CLC Number: 

  • R320
[1] Wang XY, Ma TT, Wang XY, et al. Prevalence of pollen-induced allergic rhinitis with high pollen exposure in Grasslands of northern China[J]. Allergy, 2018, 73(6): 1232-1243. doi:10.1111/all.13388.
[2] Hrdý J, Novotná O, Kocourková I, et al. The effect of the colostral cells on gene expression of cytokines in cord blood cells[J]. Folia Microbiol(Praha), 2017, 62(6): 479-483. doi:10.1007/s12223-017-0519-6.
[3] Meng SS, Gao R, Yan BD, et al. Erratum to: Maternal allergic disease history affects childhood allergy development through impairment of neonatal regulatory T-cells[J]. Respir Res, 2016, 17(1): 134. doi:10.1186/s12931-016-0443-3.
[4] Reubsaet LL, Meerding J, Scholman R, et al. Allergen-specific Th2 responses in young children precede sensitization later in life[J]. Allergy, 2014, 69(3): 406-410. doi:10.1111/all.12366.
[5] Sasaki A, Kuroda K, Hisano M, et al. Successful treatment for a recurrent pregnancy loss woman with high Th1/Th2 ratio using medium-dose corticosteroids[J]. J Obstet Gynaecol, 2017, 37(5): 685-687. doi:10.1080/01443615.2017.1285873.
[6] Mc Fadden JP, Thyssen JP, Basketter DA, et al. T helper cell 2 immune skewing in pregnancy/early life: chemical exposure and the development of atopic disease and allergy[J]. Br J Dermatol, 2015, 172(3): 584-591. doi:10.1111/bjd.13497.
[7] Prescott SL. The influence of early environmental exposures on immune development and subsequent risk of allergic disease[J]. Allergy, 2011, 66(Suppl 95): 4-6. doi:10.1111/j.1398-9995.2011.02620.x.
[8] Fu YJ, Lou HF, Wang CS, et al. T cell subsets in cord blood are influenced by maternal allergy and associated with atopic dermatitis[J]. Pediatr Allergy Immunol, 2013, 24(2): 178-186. doi:10.1111/pai.12050.
[9] Rindsjö E, Joerink M, Johansson C, et al. Maternal allergic disease does not affect the phenotype of T and B cells or the immune response to allergens in neonates[J]. Allergy, 2010, 65(7): 822-830. doi:10.1111/j.1398-9995.2009.02266.x.
[10] 黄珠珠, 王晓南, 陈凤, 等. 脐血趋化因子CCL22与特应性疾病发生风险的前瞻性研究[J]. 临床儿科杂志, 2018, 36(2): 108-112. doi:10.3969/j.issn.1000-3606.2018.02.005. HUANG Zhuzhu, WANG Xiaonan, CHEN Feng, et al. Prospective study on the relationship between CCL22, a cord blood chemokine, and risk of atopic diseases[J]. Journal of Clinical Pediatrics, 2018, 36(2): 108-112. doi:10.3969/j.issn.1000-3606.2018.02.005.
[11] Miyahara H, Okazaki N, Nagakura T, et al. Elevated umbilical cord serum TARC/CCL17 levels predict the development of atopic dermatitis in infancy [J]. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology, 2011, 41(2): 186-191. doi: 10.1111/j.1365-2222.2010.03634.x
[12] Yang CH, Tian JJ, Ko WS, et al. Oligo-fucoidan improved unbalance the Th1/Th2 and Treg/Th17 ratios in asthmatic patients: An ex vivo study[J]. Exp Ther Med, 2019, 17(1): 3-10. doi:10.3892/etm.2018.6939.
[13] Meng SS, Gao R, Yan BD, et al. Erratum to: Maternal allergic disease history affects childhood allergy development through impairment of neonatal regulatory T-cells[J]. Respir Res, 2016, 17(1): 134. doi:10.1186/s12931-016-0443-3.
[14] Lluis A, Ballenberger N, Illi S, et al. Regulation of TH17 markers early in life through maternal farm exposure[J]. J Allergy ClinImmunol, 2014, 133(3): 864-871. doi:10.1016/j.jaci.2013.09.030.
[15] Yu JY, Liu XQ, Li YL, et al. Maternal exposure to farming environment protects offspring against allergic diseases by modulating the neonatal TLR-Tregs-Thaxis[J]. Clin Transl Allergy, 2018, 8: 34.doi:10.1186/s13601-018-0220-0.
[16] Schaub B, Liu J, Höppler S, et al. Impairment of T-regulatory cells in cord blood of atopic mothers[J]. J Allergy ClinImmunol, 2008, 121(6): 1491-1499, 1499.e1-13. doi:10.1016/j.jaci.2008.04.010.
[17] Reece P, Thanendran A, Crawford L, et al. Maternal allergy modulates cord blood hematopoietic progenitor Toll-like receptor expression and function[J]. J Allergy ClinImmunol, 2011, 127(2): 447-453. doi:10.1016/j.jaci.2010.11.006.
[18] Roduit C, Wohlgensinger J, Frei R, et al. Prenatal animal contact and gene expression of innate immunity receptors at birth are associated with atopic dermatitis[J]. J Allergy ClinImmunol, 2011, 127(1): 179-185, 185.e1. doi:10.1016/j.jaci.2010.10.010.
[19] Tulic MK, Hodder M, Forsberg A, et al. Differences in innate immune function between allergic and nonallergic children: new insights into immune ontogeny[J]. J Allergy ClinImmunol, 2011, 127(2): 470-478.e1. doi:10.1016/j.jaci.2010.09.020.
[20] Casazza RL, Lazear HM, Miner JJ. Protective and Pathogenic effects of interferon signaling during pregnancy[J].Viral Immunol, 2019. doi:10.1089/vim.2019.0076
[21] Wegmann TG, Lin H, Guilbert L, et al. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon?[J]. Immunol Today, 1993, 14(7): 353-356. doi:10.1016/0167-5699(93)90235-D.
[22] Whittaker E, Goldblatt D, McIntyre P, et al. Neonatal immunization: rationale, current state, and future prospects[J]. Front Immunol, 2018, 9: 532. doi:10.3389/fimmu.2018.00532.
[23] Harb H, Irvine J, Amarasekera M, et al. The role of PKCζ in cord blood T-cell maturation towards Th1 cytokine profile and its epigenetic regulation by fish oil[J]. Biosci Rep, 2017, 37(2): BSR20160485. doi:10.1042/BSR20160485.
[24] White GP, Watt PM, Holt BJ, et al. Differential patterns of methylation of the IFN-gamma promoter at CpG and non-CpG sites underlie differences in IFN-gamma gene expression between human neonatal and adult CD45RO- T cells[J]. J Immunol, 2002, 168(6): 2820-2827. doi:10.4049/jimmunol.168.6.2820.
[25] Martino DJ, Prescott SL. Silent mysteries: epigenetic paradigms could hold the key to conquering the epidemic of allergy and immune disease[J]. Allergy, 2010, 65(1): 7-15. doi:10.1111/j.1398-9995.2009.02186.x.
[26] Brand S, Kesper DA, Teich R, et al. DNA methylation of TH1/TH2 cytokine genes affects sensitization and progress of experimental asthma[J]. J Allergy ClinImmunol, 2012, 129(6): 1602-1610.e6. doi:10.1016/j.jaci.2011.12.963.
[27] Gupta AK, Rusterholz C, Holzgreve W, et al. Constant IFNgamma mRNA to protein ratios in cord and adult blood T cells suggests regulation of IFNgamma expression in cord blood T cells occurs at the transcriptional level[J]. Clin Exp Immunol, 2005, 140(2): 282-288. doi:10.1111/j.1365-2249.2005.02758.x.
[28] White GP, Hollams EM, Yerkovich ST, et al. CpG methylation patterns in the IFNgamma promoter in naive T cells: variations during Th1 and Th2 differentiation and between atopics and non-atopics[J]. Pediatr Allergy Immunol, 2006, 17(8): 557-564. doi:10.1111/j.1399-3038.2006.00465.x.
[29] Liu PT, Stenger S, Li HY, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response[J]. Science, 2006, 311(5768): 1770-1773. doi:10.1126/science.1123933.
[30] Boonstra A, Barrat FJ, Crain C, et al. 1alpha, 25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+)T cells to enhance the development of Th2 cells[J]. J Immunol, 2001, 167(9): 4974-4980.doi:10.4049/jimmunol.167.9.4974.
[31] Gregori S, Casorati M, Amuchastegui S, et al. Regulatory T cells induced by 1 alpha, 25-dihydroxyvitamin D3 and mycophenolatemofetiltreatment mediate transplantation tolerance[J]. J Immunol, 2001, 167(4): 1945-1953.doi:10.4049/jimmunol.167.4.1945.
[32] 梁峥琰, 邓玉琴, 陶泽璋. 母亲过敏和环境暴露对免疫成熟的影响[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 96-104. doi:10.6040/j.issn.1673-3770.0.2017.363. LIANG Zhengyan. Effect of maternal allergy and environmental exposure on immune maturation[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(3): 96-104. doi:10.6040/j.issn.1673-3770.0.2017.363.
[33] Aghajafari F, Nagulesapillai T, Ronksley PE, et al. Association between maternal serum 25-hydroxyvitamin D level and pregnancy and neonatal outcomes: systematic review and meta-analysis of observational studies[J]. BMJ, 2013, 346: f1169.doi:10.1136/bmj.f1169.
[34] 程雷, 钱俊俊, 田慧琴. 变应性鼻炎研究的若干进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 1-3. doi:10.6040/j.issn.1673-3770.1.2017.021. CHENG Lei, QIAN Junjun, TIAN Huiqin. Research progresses on allergic rhinitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017, 31(3): 1-3. doi:10.6040/j.issn.1673-3770.1.2017.021.
[35] Baïz N, Dargent-Molina P, Wark JD, et al. Cord serum 25-hydroxyvitamin D and risk of early childhood transient wheezing and atopic dermatitis[J]. J Allergy ClinImmunol, 2014, 133(1): 147-153. doi:10.1016/j.jaci.2013.05.017.
[36] Chiu CY, Huang SY, Peng YC, et al. Maternal vitamin D levels are inversely related to allergic sensitization and atopic diseases in early childhood[J]. Pediatr Allergy Immunol, 2015, 26(4): 337-343. doi:10.1111/pai.12384.
[37] Stelmach I, Majak P, Jerzynska J, et al. Cord serum 25-hydroxyvitamin D correlates with early childhood viral-induced wheezing[J]. Respir Med, 2015, 109(1): 38-43. doi:10.1016/j.rmed.2014.10.016.
[38] Baïz N, Dargent-Molina P, Wark JD, et al. Cord serum 25-hydroxyvitamin D and risk of early childhood transient wheezing and atopic dermatitis[J]. J Allergy ClinImmunol, 2014, 133(1): 147-153. doi:10.1016/j.jaci.2013.05.017.
[39] Gale CR, Robinson SM, Harvey NC, et al. Maternal vitamin D status during pregnancy and child outcomes[J]. Eur J Clin Nutr, 2008, 62(1): 68-77. doi:10.1038/sj.ejcn.1602680.
[40] Chawes BL, Bnnelykke K, Jensen PF, et al. Cord blood 25(OH)-vitamin D deficiency and childhood asthma, allergy and eczema: the COPSAC2000 birth cohort study[J]. PLoS One, 2014, 9(6): e99856. doi:10.1371/journal.pone.0099856.
[41] Weisse K, Winkler S, Hirche F, et al. Maternal and newborn vitamin D status and its impact on food allergy development in the German LINA cohort study[J]. Allergy, 2013, 68(2): 220-228. doi:10.1111/all.12081.
[42] Serasanambati M,Chilakapati SR. Function of nuclear factor kappa B(NF-kB)in human diseases-Areview[J]. Sijbs, 2016, 2(4): 368. doi:10.22205/sijbs/2016/v2/i4/103443.
[43] Jacks RD, Keller TJ, Nelson A, et al. Cell intrinsic characteristics of human cord blood naïveCD4Tcells[J]. Immunol Lett, 2018, 193: 51-57. doi:10.1016/j.imlet.2017.11.011.
[1] Qintai YANG. Paying attention to the 'lateral airway' allergic diseases in children [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(1): 59-62.
[2] CHEN Ming, YU Xuefei. Opinions on the treatment of chronic rhinosinusitis with allergic rhinitis [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(3): 18-22.
[3] CHENG Lei, QIAN Junjun, TIAN Huiqin. Research progresses on allergic rhinitis. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(3): 1-3.
[4] . Relationship between vitamin D and obstructive sleep apnea hypopnea syndrome in children. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(1): 21-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!