Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2020, Vol. 34 ›› Issue (1): 110-114.doi: 10.6040/j.issn.1673-3770.0.2019.454
Previous Articles Next Articles
RUI Xiaoqing,LI Youjin
CLC Number:
[1] Wang XY, Ma TT, Wang XY, et al. Prevalence of pollen-induced allergic rhinitis with high pollen exposure in Grasslands of northern China[J]. Allergy, 2018, 73(6): 1232-1243. doi:10.1111/all.13388. [2] Hrdý J, Novotná O, Kocourková I, et al. The effect of the colostral cells on gene expression of cytokines in cord blood cells[J]. Folia Microbiol(Praha), 2017, 62(6): 479-483. doi:10.1007/s12223-017-0519-6. [3] Meng SS, Gao R, Yan BD, et al. Erratum to: Maternal allergic disease history affects childhood allergy development through impairment of neonatal regulatory T-cells[J]. Respir Res, 2016, 17(1): 134. doi:10.1186/s12931-016-0443-3. [4] Reubsaet LL, Meerding J, Scholman R, et al. Allergen-specific Th2 responses in young children precede sensitization later in life[J]. Allergy, 2014, 69(3): 406-410. doi:10.1111/all.12366. [5] Sasaki A, Kuroda K, Hisano M, et al. Successful treatment for a recurrent pregnancy loss woman with high Th1/Th2 ratio using medium-dose corticosteroids[J]. J Obstet Gynaecol, 2017, 37(5): 685-687. doi:10.1080/01443615.2017.1285873. [6] Mc Fadden JP, Thyssen JP, Basketter DA, et al. T helper cell 2 immune skewing in pregnancy/early life: chemical exposure and the development of atopic disease and allergy[J]. Br J Dermatol, 2015, 172(3): 584-591. doi:10.1111/bjd.13497. [7] Prescott SL. The influence of early environmental exposures on immune development and subsequent risk of allergic disease[J]. Allergy, 2011, 66(Suppl 95): 4-6. doi:10.1111/j.1398-9995.2011.02620.x. [8] Fu YJ, Lou HF, Wang CS, et al. T cell subsets in cord blood are influenced by maternal allergy and associated with atopic dermatitis[J]. Pediatr Allergy Immunol, 2013, 24(2): 178-186. doi:10.1111/pai.12050. [9] Rindsjö E, Joerink M, Johansson C, et al. Maternal allergic disease does not affect the phenotype of T and B cells or the immune response to allergens in neonates[J]. Allergy, 2010, 65(7): 822-830. doi:10.1111/j.1398-9995.2009.02266.x. [10] 黄珠珠, 王晓南, 陈凤, 等. 脐血趋化因子CCL22与特应性疾病发生风险的前瞻性研究[J]. 临床儿科杂志, 2018, 36(2): 108-112. doi:10.3969/j.issn.1000-3606.2018.02.005. HUANG Zhuzhu, WANG Xiaonan, CHEN Feng, et al. Prospective study on the relationship between CCL22, a cord blood chemokine, and risk of atopic diseases[J]. Journal of Clinical Pediatrics, 2018, 36(2): 108-112. doi:10.3969/j.issn.1000-3606.2018.02.005. [11] Miyahara H, Okazaki N, Nagakura T, et al. Elevated umbilical cord serum TARC/CCL17 levels predict the development of atopic dermatitis in infancy [J]. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology, 2011, 41(2): 186-191. doi: 10.1111/j.1365-2222.2010.03634.x [12] Yang CH, Tian JJ, Ko WS, et al. Oligo-fucoidan improved unbalance the Th1/Th2 and Treg/Th17 ratios in asthmatic patients: An ex vivo study[J]. Exp Ther Med, 2019, 17(1): 3-10. doi:10.3892/etm.2018.6939. [13] Meng SS, Gao R, Yan BD, et al. Erratum to: Maternal allergic disease history affects childhood allergy development through impairment of neonatal regulatory T-cells[J]. Respir Res, 2016, 17(1): 134. doi:10.1186/s12931-016-0443-3. [14] Lluis A, Ballenberger N, Illi S, et al. Regulation of TH17 markers early in life through maternal farm exposure[J]. J Allergy ClinImmunol, 2014, 133(3): 864-871. doi:10.1016/j.jaci.2013.09.030. [15] Yu JY, Liu XQ, Li YL, et al. Maternal exposure to farming environment protects offspring against allergic diseases by modulating the neonatal TLR-Tregs-Thaxis[J]. Clin Transl Allergy, 2018, 8: 34.doi:10.1186/s13601-018-0220-0. [16] Schaub B, Liu J, Höppler S, et al. Impairment of T-regulatory cells in cord blood of atopic mothers[J]. J Allergy ClinImmunol, 2008, 121(6): 1491-1499, 1499.e1-13. doi:10.1016/j.jaci.2008.04.010. [17] Reece P, Thanendran A, Crawford L, et al. Maternal allergy modulates cord blood hematopoietic progenitor Toll-like receptor expression and function[J]. J Allergy ClinImmunol, 2011, 127(2): 447-453. doi:10.1016/j.jaci.2010.11.006. [18] Roduit C, Wohlgensinger J, Frei R, et al. Prenatal animal contact and gene expression of innate immunity receptors at birth are associated with atopic dermatitis[J]. J Allergy ClinImmunol, 2011, 127(1): 179-185, 185.e1. doi:10.1016/j.jaci.2010.10.010. [19] Tulic MK, Hodder M, Forsberg A, et al. Differences in innate immune function between allergic and nonallergic children: new insights into immune ontogeny[J]. J Allergy ClinImmunol, 2011, 127(2): 470-478.e1. doi:10.1016/j.jaci.2010.09.020. [20] Casazza RL, Lazear HM, Miner JJ. Protective and Pathogenic effects of interferon signaling during pregnancy[J].Viral Immunol, 2019. doi:10.1089/vim.2019.0076 [21] Wegmann TG, Lin H, Guilbert L, et al. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon?[J]. Immunol Today, 1993, 14(7): 353-356. doi:10.1016/0167-5699(93)90235-D. [22] Whittaker E, Goldblatt D, McIntyre P, et al. Neonatal immunization: rationale, current state, and future prospects[J]. Front Immunol, 2018, 9: 532. doi:10.3389/fimmu.2018.00532. [23] Harb H, Irvine J, Amarasekera M, et al. The role of PKCζ in cord blood T-cell maturation towards Th1 cytokine profile and its epigenetic regulation by fish oil[J]. Biosci Rep, 2017, 37(2): BSR20160485. doi:10.1042/BSR20160485. [24] White GP, Watt PM, Holt BJ, et al. Differential patterns of methylation of the IFN-gamma promoter at CpG and non-CpG sites underlie differences in IFN-gamma gene expression between human neonatal and adult CD45RO- T cells[J]. J Immunol, 2002, 168(6): 2820-2827. doi:10.4049/jimmunol.168.6.2820. [25] Martino DJ, Prescott SL. Silent mysteries: epigenetic paradigms could hold the key to conquering the epidemic of allergy and immune disease[J]. Allergy, 2010, 65(1): 7-15. doi:10.1111/j.1398-9995.2009.02186.x. [26] Brand S, Kesper DA, Teich R, et al. DNA methylation of TH1/TH2 cytokine genes affects sensitization and progress of experimental asthma[J]. J Allergy ClinImmunol, 2012, 129(6): 1602-1610.e6. doi:10.1016/j.jaci.2011.12.963. [27] Gupta AK, Rusterholz C, Holzgreve W, et al. Constant IFNgamma mRNA to protein ratios in cord and adult blood T cells suggests regulation of IFNgamma expression in cord blood T cells occurs at the transcriptional level[J]. Clin Exp Immunol, 2005, 140(2): 282-288. doi:10.1111/j.1365-2249.2005.02758.x. [28] White GP, Hollams EM, Yerkovich ST, et al. CpG methylation patterns in the IFNgamma promoter in naive T cells: variations during Th1 and Th2 differentiation and between atopics and non-atopics[J]. Pediatr Allergy Immunol, 2006, 17(8): 557-564. doi:10.1111/j.1399-3038.2006.00465.x. [29] Liu PT, Stenger S, Li HY, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response[J]. Science, 2006, 311(5768): 1770-1773. doi:10.1126/science.1123933. [30] Boonstra A, Barrat FJ, Crain C, et al. 1alpha, 25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+)T cells to enhance the development of Th2 cells[J]. J Immunol, 2001, 167(9): 4974-4980.doi:10.4049/jimmunol.167.9.4974. [31] Gregori S, Casorati M, Amuchastegui S, et al. Regulatory T cells induced by 1 alpha, 25-dihydroxyvitamin D3 and mycophenolatemofetiltreatment mediate transplantation tolerance[J]. J Immunol, 2001, 167(4): 1945-1953.doi:10.4049/jimmunol.167.4.1945. [32] 梁峥琰, 邓玉琴, 陶泽璋. 母亲过敏和环境暴露对免疫成熟的影响[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 96-104. doi:10.6040/j.issn.1673-3770.0.2017.363. LIANG Zhengyan. Effect of maternal allergy and environmental exposure on immune maturation[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(3): 96-104. doi:10.6040/j.issn.1673-3770.0.2017.363. [33] Aghajafari F, Nagulesapillai T, Ronksley PE, et al. Association between maternal serum 25-hydroxyvitamin D level and pregnancy and neonatal outcomes: systematic review and meta-analysis of observational studies[J]. BMJ, 2013, 346: f1169.doi:10.1136/bmj.f1169. [34] 程雷, 钱俊俊, 田慧琴. 变应性鼻炎研究的若干进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 1-3. doi:10.6040/j.issn.1673-3770.1.2017.021. CHENG Lei, QIAN Junjun, TIAN Huiqin. Research progresses on allergic rhinitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017, 31(3): 1-3. doi:10.6040/j.issn.1673-3770.1.2017.021. [35] Baïz N, Dargent-Molina P, Wark JD, et al. Cord serum 25-hydroxyvitamin D and risk of early childhood transient wheezing and atopic dermatitis[J]. J Allergy ClinImmunol, 2014, 133(1): 147-153. doi:10.1016/j.jaci.2013.05.017. [36] Chiu CY, Huang SY, Peng YC, et al. Maternal vitamin D levels are inversely related to allergic sensitization and atopic diseases in early childhood[J]. Pediatr Allergy Immunol, 2015, 26(4): 337-343. doi:10.1111/pai.12384. [37] Stelmach I, Majak P, Jerzynska J, et al. Cord serum 25-hydroxyvitamin D correlates with early childhood viral-induced wheezing[J]. Respir Med, 2015, 109(1): 38-43. doi:10.1016/j.rmed.2014.10.016. [38] Baïz N, Dargent-Molina P, Wark JD, et al. Cord serum 25-hydroxyvitamin D and risk of early childhood transient wheezing and atopic dermatitis[J]. J Allergy ClinImmunol, 2014, 133(1): 147-153. doi:10.1016/j.jaci.2013.05.017. [39] Gale CR, Robinson SM, Harvey NC, et al. Maternal vitamin D status during pregnancy and child outcomes[J]. Eur J Clin Nutr, 2008, 62(1): 68-77. doi:10.1038/sj.ejcn.1602680. [40] Chawes BL, Bnnelykke K, Jensen PF, et al. Cord blood 25(OH)-vitamin D deficiency and childhood asthma, allergy and eczema: the COPSAC2000 birth cohort study[J]. PLoS One, 2014, 9(6): e99856. doi:10.1371/journal.pone.0099856. [41] Weisse K, Winkler S, Hirche F, et al. Maternal and newborn vitamin D status and its impact on food allergy development in the German LINA cohort study[J]. Allergy, 2013, 68(2): 220-228. doi:10.1111/all.12081. [42] Serasanambati M,Chilakapati SR. Function of nuclear factor kappa B(NF-kB)in human diseases-Areview[J]. Sijbs, 2016, 2(4): 368. doi:10.22205/sijbs/2016/v2/i4/103443. [43] Jacks RD, Keller TJ, Nelson A, et al. Cell intrinsic characteristics of human cord blood naïveCD4Tcells[J]. Immunol Lett, 2018, 193: 51-57. doi:10.1016/j.imlet.2017.11.011. |
[1] | Qintai YANG. Paying attention to the 'lateral airway' allergic diseases in children [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(1): 59-62. |
[2] | CHEN Ming, YU Xuefei. Opinions on the treatment of chronic rhinosinusitis with allergic rhinitis [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(3): 18-22. |
[3] | CHENG Lei, QIAN Junjun, TIAN Huiqin. Research progresses on allergic rhinitis. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(3): 1-3. |
[4] | . Relationship between vitamin D and obstructive sleep apnea hypopnea syndrome in children. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(1): 21-26. |
|